Skip to main content
Log in

Biochemical and molecular studies on declining and decline-resistant spruce in the north-east of France

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In declining forests of the Vosges mountains (northeast of France), we previously observed that the yellowing of spruce (Picea abies L. cv. Karsten) needles was associated with impairment of the free radical scavenging capacity of the cells and coincided with chronic exposure to ozone. Chloroplasts of yellow needles were characterized by an abnormal accumulation of photosystem II (PSII) D1-protein in the thylakoids. Further experiments carried out on declining and decline-resistant individual spruce trees characterized in previous studies showed that needle yellowing was associated with impairment of the overall anti-oxidative defense in both the cytosol and the chloroplasts. Both enzymic (peroxidases) and non-enzymic (carotenoids) oxidant scavengers were shown to be affected in the declining spruce. PSII D1-protein accumulation seemed to result from a stabilization of the polypeptide, which led us to hypothesize that oxidative processes might interfere with the specific degradation of this protein in declining spruce, with destructive consequences for the photosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

Cab proteins:

chlorophyll a/b-binding proteins

GPX:

guaiacol peroxidase

PSII:

photosystem II

ROS:

reactive oxygen species

References

  1. Blank LW, Roberts TM, Skeffington RA (1988): New perspectives on forest decline. Nature336, 27–30

    Article  Google Scholar 

  2. Rehfuess KE (1991): Review of forest decline research activities and results in the Federal Republic of Germany. J. Environ. Sci. HealthA26, 415–445

    Article  CAS  Google Scholar 

  3. Landmann G, Bonneau M, Eds (1995): Forest decline and atmospheric deposition effects in the French mountains. Springer-Verlag, Heidelberg, Berlin, New York, 492 pp

    Google Scholar 

  4. Schmieden U, Wild A (1995): The contribution of ozone to forest decline. Physiol. Plant.94, 371–378

    Article  CAS  Google Scholar 

  5. Wild A, Schmitt V (1995): Diagnosis of damage to Norway spruce (Picea abies) through biochemical criteria. Physiol. Plant.93, 375–382

    Article  CAS  Google Scholar 

  6. Herman F, Lütz C, Smidt S (1998): Pollution-related stress factors for forest ecosystems. Environ Sci & Pollut Res Spec. Issue 1,2–15

    Google Scholar 

  7. Tausz M, Stabentheiner E, Wonisch A, Grill D (1998): Classification of biochemical response patterns for the assessment of environmental stress to Norway spruce. Environ Sci & Pollut Res Spec. Issue 1, 96–100

    Google Scholar 

  8. Maier-Maercker U (1999): Predisposition of trees to drought stress by ozone. Tree Physiology19, 71–78

    CAS  Google Scholar 

  9. Frank H, Scholl H, Renschen D, Rether B, Laouedj A, Norokorpi Y (1994): Haloacetic acids, phytotoxic secondary air pollutants. Environ Sci & Pollut Res1, 4–14

    Article  CAS  Google Scholar 

  10. Guillemaut P, Weber-Lotfi F, Blache D, Prost M, Rether B, Dietrich A (1992): Conifer decline in the north-east of France: Characteristic changes in chloroplast protein pattern and absence of antioxidative defense capability point to an involvement of ozone. Physiol. Plant.85, 215–222

    Article  CAS  Google Scholar 

  11. Sandermann H, Wellburn AR, Heath RL, Eds (1997): Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecological Studies, Vol. 127, Springer-Verlag, Heidelberg, Berlin, New York, 400 pp

    Google Scholar 

  12. Langebartels C, Heller W, Führer G, Lippert M, Simons S, Sandermann HJ (1998): Memory effects in the action of ozone on conifers. Ecotoxicol. Environ. Saf.41, 62–72

    Article  CAS  Google Scholar 

  13. Forschungsbeirat Waldschäden/Luftverunreinigungen der Bundesregierung und der Länder (1986): 2. Bericht. Kernforschungszentrum Karlsruhe, pp. 37–86

  14. Bittlingmaier L, Reinhardt W, Siefermann-Harms D, Eds (1995): Waldschäden im Schwarzwald. Ergebnisse einer interdisziplinären Freilandstudie zum montanen Vergilbung am Standort Freudenstadt/Schöllkopf. Umweltforschung in Baden-Württemberg, ecomed verlag, Landsberg, 450 pp

    Google Scholar 

  15. Siefermann-Harms D (1996): Destabilization of the antenna complex LHC II during needle yellowing of a Mg-deficient spruce tree exposed to ozone pollution—Comparison with other types of yellowing. J. Plant Physiol.148, 195–202

    CAS  Google Scholar 

  16. Langebartels C, Ernst D, Heller W, Lütz C, Payer HD, Sandermann H. (1997): Ozone responses of trees: Results from controlled chamber exposures at the GSF phytotron. In: Sandermann H, Wellburn AR, Heath RL, Eds, Forest decline and ozone: A comparison of controlled chamber and field experiments. Ecological Studies, Vol. 127, Springer-Verlag, Heidelberg, Berlin, New York, pp. 163–200

    Google Scholar 

  17. Siefermann-Harms D, Payer HD, Schramel P, Lütz C (1999): Die Wirkung von Ozon auf die Nadelvergilbung bei jungen, unter Mg-Mangel kultivierten Klonfichten. Ergebnisse zweier Expositionsversuche in geschlossenen Kammern. BWPLUS Report, PEF 196006, 16 pp., available athttp://bwplus.fzk.de/berichte/ ZBer/99/ZBer 196006.pdf

  18. Lütz C, Siefermann-Harms D. (2000): Die Wechselwirkungen von Ozon und Mg-Mangel bei der Fichte: Eine Erklärung der Montanen Vergilbung? Workshop Risikofaktoren für alpine Waldökosysteme—Wissensstand und Forschungsbedarf, Innsbruck, Austria, available athttp://www.fbva.bmlf.gv.at/events/ risikofaktoren2000/luetz.html

  19. Landmann G (1992): Forest decline and air pollution: What we have learnt (DEFORPA Program 1984–1991). Pollution Atmosphérique133, 81–92

    CAS  Google Scholar 

  20. Landmann G, Bonneau M, Bouhot-Delduc L, Fromard F, Chéret V, Dagnac J, Souchier B (1995): Crown damage in Norway spruce and silver fir: Relation to nutritional status and soil chemical characteristics in the French mountains. In: Landmann G, Bonneau M, Eds, Forest decline and atmospheric deposition effects in the French mountains. Springer-Verlag, Heidelberg, Berlin, New York, pp. 41–59

    Google Scholar 

  21. Blache D, Prost M (1992): Free radical attack: Biological test for human resistance capability. In: Ponnamperuma C, Gehrke CW, Eds, Proceedings of the IX College Park Colloquium on Chemical Evolution: A Lunar-Based Chemical Analysis Laboratory (LBCAL). NASA, Washington, pp. 82–98

    Google Scholar 

  22. Laloue H, Weber-Lotfi F, Lucau-Danila A, Guillemaut P (1997): Identification of ascorbate and guaiacol peroxidases in needle chloroplasts of spruce trees. Plant Physiol. Biochem.35, 341–346

    CAS  Google Scholar 

  23. Asada K (1992): Ascorbate peroxidase—a hydrogen peroxidescavenging enzyme in plants. Physiol. Plant.58, 235–241

    Article  Google Scholar 

  24. Schantz ML, Schreiber H, Guillemaut P, Schantz R (1995): Changes in ascorbate peroxidase activities during fruit ripening inCapsicum annuum. FEBS Lett.358, 149–152

    Article  CAS  Google Scholar 

  25. Laemmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685

    Article  CAS  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T (1989): Molecular cloning: A laboratory manual. 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  27. Feinberg AP, Vogelstein B (1983): A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem.132, 6–13

    Article  CAS  Google Scholar 

  28. Bonneau M (1990): Dépérissement des forêts: sécheresse, pollution acide, autres causes. Sécheresse1, 44–54

    Google Scholar 

  29. Bonneau M (1987): Incidence des conditions écologiques sur le dépérissement. In: Les recherches en France sur le dépérissement des forêts, Programme DEFORPA, 1er rapport, Ecole Nationale du Génie Rural, des Eaux et des Forêts (GREF), Nancy, pp. 34–41

    Google Scholar 

  30. Stefan K, Fürst A (1998): Indication of S and N inputs by means of needle analyses based on the Austrian bio-indicator grid. Environ Sci & Pollut Res Spec. Issue1, 63–69

    Google Scholar 

  31. Heath RL, Taylor GE (1997): Physiological processes and plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL, Eds, Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecological Studies, Vol. 127, Springer-Verlag, Heidelberg, Berlin, New York, pp. 317–368

    Google Scholar 

  32. Pell EJ, Schlagnhaufer CD, Arteca RN (1997): Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiol. Plant.100, 264–273

    Article  CAS  Google Scholar 

  33. Schraudner M, Langebartels C, Sandermann H (1997): Changes in the biochemical status of plant cells induced by the environmental pollutant ozone. Physiol. Plant.100, 274–280

    Article  CAS  Google Scholar 

  34. Foyer CH, Lelandais M, Kunert KJ (1994): Photooxidative stress in plants. Physiol. Plant.92, 696–717

    Article  CAS  Google Scholar 

  35. Alscher RG, Donahue JL, Cramer CL (1997): Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant.100, 224–233

    Article  CAS  Google Scholar 

  36. Sharma YK, Davis KR (1997): The effects of ozone on antioxidant responses in plants. Free Radic. Biol. Med.23, 480–488

    Article  CAS  Google Scholar 

  37. Hausladen A, Madamanchi NR Fellows S, Alscher RG, Amundson RG (1990): Seasonal changes in antioxidants in red spruce as affected by ozone. New Phytol.115, 447–458

    Article  CAS  Google Scholar 

  38. Sen-Gupta A, Alscher RG, McCune D (1991): Response of photosynthesis and cellular antioxidants to ozone inPopulus leaves. Plant Physiol.96, 650–655

    CAS  Google Scholar 

  39. Luwe M (1996): Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ.19, 321–328

    Article  CAS  Google Scholar 

  40. Sandermann Jr H (1996): Ozone and plant health. Annu. Rev. Phytopathol.34, 347–366

    Article  CAS  Google Scholar 

  41. Tuomainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996): Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression levels. J. Plant Physiol.148, 179–188

    CAS  Google Scholar 

  42. Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR (2000): Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol.123, 487–496

    Article  CAS  Google Scholar 

  43. Schmieden U, Schneider S, Wild A (1993): Glutathione status and glutathione reductase activity in spruce needles of healthy and damaged trees at two mountain sites. Environ. Pollut.82, 239–244

    Article  CAS  Google Scholar 

  44. Schmieden U, Wild A (1994): Changes in levels of a-tocopherol and ascorbate in spruce needles at three low mountain sites exposed to ozone and Mg2+ deficiency. Z. Naturforsch.49c, 171–180

    Google Scholar 

  45. Polle A, Rennenberg H (1992): Field studies on Norway spruce trees at high altitudes: Defence systems against oxidative stress in needles. New Phytol.121, 635–642

    Article  CAS  Google Scholar 

  46. Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996): Ascorbate is the natural substrate for plant peroxidases. FEBS Lett.378, 203–206

    Article  CAS  Google Scholar 

  47. Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997): Plant glutathione peroxidases. Physiol. Plant.100, 234–240

    Article  CAS  Google Scholar 

  48. Lütz C, Anegg S, Gérant D, Alaoui-Sossé B, Gérard J, Dizengremel P (2000): Beech trees exposed to high CO2 and to simulated summer ozone levels: Effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol. Plant.109, 252–259

    Article  Google Scholar 

  49. Frank H, Frank W (1986): Photochemical activation of chloroethenes leading to destruction of photosynthetic pigments. Experientia42, 1267–1269

    Article  CAS  Google Scholar 

  50. Brack W, Frank H (1998): Chlorophyll a fluorescence: a tool for the investigation of toxic effects in the photosynthetic apparatus. Ecotoxicol. Environ. Saf.40, 34–41

    Article  CAS  Google Scholar 

  51. Debus R, Schröder P (2000): Effects of halone 1301 onLepidium sativum, Petunia hybrida andPhaseolus vulgaris. Chemosphere41, 1603–1610

    Article  CAS  Google Scholar 

  52. Larson RA (1995): Plant defenses against oxidative stress. Archives of Insect Biochemistry and Physiology29, 175–186

    Article  CAS  Google Scholar 

  53. Kyle DJ (1987): The biochemical basis for photoinhibition of photosystem II. In: Kyle DJ, Osmond CB, Arntzen CJ, Eds, Photoinhibition, Topics in Photosynthesis. Vol. 9, Elsevier Science Publishers, Amsterdam, pp. 197–226

    Google Scholar 

  54. Aro EM, Virgin I, Andersson B (1993): Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta1143, 113–134

    Article  CAS  Google Scholar 

  55. Dannehl H, Wietoska H, Heckmann H, Godde D (1996): Changes in D1-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta199, 34–42

    Article  CAS  Google Scholar 

  56. Ottander C, Campbell D, Öquist G (1995): Seasonal changes in photosystem II organisation and pigment composition inPinus sylvestris. Planta197, 176–183

    Article  CAS  Google Scholar 

  57. Eastman PAK, Rashid A, Camm EL (1997): Changes of the photosystem II activity and thylakoid proteins in spruce seedlings during water stress. Photosynthetica34, 201–210

    Article  CAS  Google Scholar 

  58. Godde D, Schmitz H, Weidner M (1990): Turnover of the D-1 reaction center polypeptide from photosystem II in intact spruce needles and spinach leaves. Z. Naturforsch.46c, 245–251

    Google Scholar 

  59. Konopka C, Hollinderbäumer R, Ebbert V, Wietoska H, Godde D (1996): Imbalances of D1 protein turnover during stress induced chlorosis of a declining spruce tree. J. Plant Physiol.148, 324–331

    CAS  Google Scholar 

  60. Baur M, Laucheet U, Wild A (1998): Biochemical indicators for novel forest decline in spruce. Chemosphere36, 865–870

    Article  CAS  Google Scholar 

  61. Aro EM, McCaffery S, Anderson JM (1993): Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol.103, 835–843

    CAS  Google Scholar 

  62. Kim JH, Nemson JA, Melis A (1993): Photosystem II reaction center damage and repair inDunaliella salina (green alga). Plant Physiol.103, 181–189

    Article  CAS  Google Scholar 

  63. Anderson JM, Aro EM (1994): Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis. Photosynth. Res.41, 315–326

    Article  CAS  Google Scholar 

  64. Godde D, Buchhold J (1992): Effect of long term fumigation with ozone on the turnover of the D-1 reaction center polypeptide of photosystem II in spruce (Picea abies). Physiol. Plant.86, 568–574

    Article  CAS  Google Scholar 

  65. Lütz C, Steiger A, Godde D (1992): Influence of air pollutants and nutrient deficiency on D1 protein content and photosynthesis in young spruce trees. Physiol. Plant.85, 611–617

    Article  Google Scholar 

  66. Ranieri A, Tognini M, Tozzi C, Barbato R, Soldatini GF (1997): Changes in the thylakoid protein pattern in sunflower plants as a result of ozone fumigation. J. Plant Physiol.151, 227–234

    CAS  Google Scholar 

  67. Spetea C, Hundal T, Lohmann F, Andersson B (1999): GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein. Proc. Natl. Acad. Sci. USA96, 6547–6552

    Article  CAS  Google Scholar 

  68. Sharma J, Panico M, Shipton CA, Nilsson F, Morris HR, Barber J (1997): Primary structure characterization of the photosystem II D1 and D2 proteins. J. Biol. Chem.272, 33158–33166

    Article  CAS  Google Scholar 

  69. Rintamaki E, Kettunen R, Aro EM (1996): Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. Dephosphorylation is a prerequisite for degradation of damaged D1. J. Biol. Chem.271, 14870–14875

    Article  CAS  Google Scholar 

  70. Baker NR (1991): A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol. Plant.81, 563–570

    Article  CAS  Google Scholar 

  71. Anderson JM, Park YI, Chow WS (1997): Photoinactivation and photoprotection of photosystem II in nature. Physiol. Plant.100, 214–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Dietrich.

Additional information

former: Laboratoire de Biologie Végétale Appliquée, IUT Louis Pasteur, Allée d’Athènes, F-67300 Schiltigheim, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber-Lotfi, F., Guillemaut, P., Poirey, R. et al. Biochemical and molecular studies on declining and decline-resistant spruce in the north-east of France. Environ Sci & Pollut Res 9, 122–129 (2002). https://doi.org/10.1007/BF02987459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987459

Keywords

Navigation