Abstract
The widespread use of industrial chemicals in our highly industrialized society has often caused contamination of large terrestrial and marine areas due to the deliberate and accidental release of organic pollutants into the soil and groundwater. In this review, environmental problems arising from the use of chlorinated solvents and BTEX compounds are described, and an overview about active management strategies for remediation with special emphasis on phytoremediation are presented to achieve a reduction of the total mass of chlorinated solvents and BTEX compounds in contaminated areas. Phytoremediation has been proposed as an efficient, low-cost remediation technique to restore areas contaminated with chlorinated solvents and BTEX compounds. The feasibility of phytoremediation as a remediation tool for these compounds is discussed with particular reference to the uptake and metabolism of these compounds, and a future perspective on the use of phytoremediation for the removal of chlorinated solvents and BTEX compounds is given.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- BTEX:
-
Benzene, Toluene, Ethylbenzene, o-, m-, p-Xylene
- CH:
-
Chloral hydrate
- DCA:
-
Dichloroacetic acid
- DCVC:
-
S-(1,2-dichlorovinyl)-1-cysteine
- DCVG:
-
S-(1,2-dichloro-vinyl) glutathione
- PCE:
-
Tetrachloroethene
- TCA:
-
Trichloroacetic acid
- TCE:
-
Trichloroethene
References
Sytsma L, Mulder J, Schneider J, Negri C, Hinchman, R, Gatliff, E (1997): Uptake and fate of organohalogens from contaminated groundwater in woody plants. Book of Abstracts ‘213th ACS National Meeting’, American Chemical Society, Washington, AGRO-029
Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS (1999): Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environ Sci Technol 33, 4176–4187
McCulloch A, Aucott ML, Graedel TE, Kleiman G, Midgley PM, Li YF (1999): Industrial emissions of TCE, PCE, and dichloromethane-reactive chlorine emissions inventory. J Geophys Res 104, 8417–8427
Butler EC, Hayes KF (1999): Kinetics of the transformation of TCE and PCE by iron sulfide. Environ Sci Technol 33, 2021–2027
Kastner JR, Domingo JS, Denham M, Molina M, Brigmon R (2000): Effect of chemical oxidation on subsurface microbiology and TCE biodegradation. Biorem J 4, 219–236
DeWeerd KA, Flanagan WP, Brennan MJ, Principe JM, Spivack JL (1998): Biodegradation of TCE and dichloromethane in contaminated soil and groundwater. Biorem J 2, 29–42
Brack W, Rottler H, Frank H (1998): Volatile fractions of landfill leachates and their effect onChlamydomonas reinhardtii —In-vivo chlorophyll a fluorescence. Environ Sci Technol 17, 1982–1991
Baehr AL, Stackelberg PE, Baker RJ (1999): Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resour Res 35, 127–136
Travis BJ, Rosenberg ND (1997): Modelingin-situ bioremediation of TCE at Savannah river — Effetcs of product toxicity and microbial interaction on TCE degradation. Environ Sci Technol 31, 3093–3102
Cho JS, Wilson JT, DiGiulio DC, Vardy JA, Choi W (1997): Implementation of natural attenuation at a JP-4 jet fuel release after active remediation. Biodegradation 8, 265–273
Shen Y (1998): In vitro cytotoxicity of BTEX metabolites in hela cells. Arch Environ Contam Toxicol 34, 229–234
Plata-Chebbah L.personal communication
CERCLIS report No MID980499966 (1988): Health assessment for Springfield township dump site, Oakland country, Michigan, region 5. Gov Rep, Atlanta, 14 pp
Singh HB, Salas L, Viezee W, Sitton B, Ferek R (1992): Measurement of volatile organic chemicals at selected sites in California. Atmos Environ 26, 2929–2946
Kaneko T, Wang PY, Sato A 1997): Assessment of the health effects of TCE. Ind Health 35, 301–324
Kuo HW, Chiang TF, Lo H, Chan CC, Lai JS, Wang JD (1997): Exposure assessment of volatile organic compounds from water in Taiwan metropolitan and petrochemical areas. Bull Environ Contam Toxicol 59, 708–714
Reese E, Kimbrough RD (1993): Acute toxicity of gasoline and some additives. Environ Health Persp 101, 167–179
Salanitro JP, Dorn PB, Huesemann MH, Moore KO, Rhodes IA, Rice Jackson LM, Vipond TE Western MM, Wisniewski HL (1997): Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31, 1769–1776
Regno V, Arulgnanendran J, Nirmalakhandran N (1998): Microbial toxicity in soil medium. Ecotoxic Environ Safe 39, 48–56
Welp G, Brummer GW (1999): Effects of organic pollutants on soil microbial activity - The influence of sorption, solubility, and speciation. Ecotoxic Environ Safe 43, 83–90
Heller A (1904): Über die Wirkung ätherischer Öle und einige verwandter Körper auf die Pflanzen. Flora 93, 1–31
Deigaard L, Haselhoff A, Nijboer M, Weber K (2000): Towards a new European approach for the selection of soil remediation alternatives. Proceedings of ‘7th Int FZK/TNO Conf on Contaminated Soil-ConSoil 2000’, Telford Publishing, London, pp 155–156
McFee JN, Rasmussen GP, Young CM (1985): The design and demonstration of a fluidized bed incinerator for the destruction of hazardous organic materials in soils. J Hazard Mater 12, 129–142
Trick L, Kuehl MA, Uschan RM (1989): Use of a batch asphalt plant for remediation of soils contaminated by volatile organic compounds. Proceedings of ‘43rd Ind Waste Conf’, Vol date 1988, 61–65
Wang X, Fu J, Sheng G, Min Y, Peng P, Lee SC, Chan LY, Chan CY, Lin Y (1999): Removal and emission of volatile organic compounds in Datansha wastewater treatment plant, Guangzhou. Huanjing Huaxue 18, 157–162 (in Chinese)
Meyer O, Warrelmann J, von Reis H (1995): Pilot plant stage bioremediation of CKW-and BTEX-contaminated soil by insitu infiltration in combination with on-site water and air treatment at model site Eppelheim. Soil Environ 5, 843–852
O’Niell WL, Nzengung VA (2000): Treatment of organic-contaminated water in microbial mat bioreactors. In: Wickramanayake GB (Ed). Proceedings of ‘2nd Int Conf on Remediation of Chlorinated Recalcitrant Compounds’, Battelle Press, Columbus, pp 349–352
Phelps TJ, Niedzielski JJ, Schram RM, Herbes SE, White DC (1990): Biodegradation of TCE in continuous-recycle expanded-bed bioreactors. Appl Environ Microbiol 56, 1702–1709
Shin HS, Lim JL (1996): Performance of packed-bed bioreactors for the cometabolic degradation of TCE by phenol-oxidizing microorganisms. Environ Technol 17, 1351–1359
Gleason PJ, Kavanaugh MC, Ozbilgen MM, Blowers MA, Carroll PJ, Kuersteiner JD, Boone TJ (1991): A remediation program that is working. Hazard Mater Control 4, 25–31
Barrera JA (1993): Air sparging and vapor extraction as a means of removing chlorinated and BTEX compounds in complex groundwater conditions. Ground Water Manage 17, 541–555
Kirtland BC, Aelion CM (2000): Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation. J Contam Hydrol 41, 367–383
Kubota K, Hashimoto M, Gohda H, Iwasaki K, Yagi O (1999): Degradation of TCE in soil columns byMethylocystis sp. M. In: Alleman B.C., Leeson A. (Eds). Proceedings of ‘5th Int.In-Situ On-Site Biorem Symp’ Batelle Press, Columbus, pp 101–106
Doring S, Schulze S, Werner P (1999): Elimination of chlororganic compounds by adsorption and simultaneous microbiological degradation on activated carbon. Biol Abwasserreinig 12, 187–195
DeFlaun MF, Condee CW (1997): Electrokinetic transport of bacteria. J Hazard Mater 55, 263–277
Kelly WR, Saliga MP, Machesky ML, Freedman DL (1996): Biodegradation of BTEX under iron-reducing conditions in batch microcosms. eeding of ‘WEFTEC ’96-96th Annu Conf Expo’ Water Environment Federation, Alexandria, pp 161–172
Gu B, Liang L, Cameron P, West OR, Korte N (1997): Degradation of TCE and PCB by Fe and Fe-Pd bimetals in the presence of a surfactant and a cosolvent. Proceeding of ‘Int Containment Technol Conf’ National Technical Information Service, Springfield, pp 760–766
Shen P, Rabideau AJ (1998): Enhanced degradation of TCE in the presence of metallic iron and soil/smectites. Hazard Ind Wastes 30, 349–358
Hong MS, Farmayan WF, Dortch IJ, Chiang CY, McMillan SK, Schnoor JL (2001): Phytoremediation of MTBE from a groundwater plume. Environ Sci Technol 35 (6): 1231–1239
Newman LA, Wang X, Muiznieks IA, Ekuan G, Ruszaj M, Cortellucci R, Domroes D, Karscig G, Newman T, Crampton RS, Hashmonay RA, Yost MG, Heilman PE, Duffy J, Gordon MP, Strand SE (1999): Remediation of TCE in an artificial aquifer with trees. A controlled field study. Environ Sci Technol 33, 2257–2265
Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000): Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci USA 97, 6287–6291
Schroll R, Bierling B, Cao G, Doerfler U, Lahaniati M, Langenbach T, Scheunert I, Winkler R (1994): Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 28, 297–303
Briggs GG, Bromilow RH (1983): Relationships Between Lipophilicity and the Distribution of Non-Ionized Chemicals in Barley Shoots Following Uptake By the Roots. Pesticide Science 14(5): 492–500
Rigitano RLO, Briggs GG (1986): Phloem Translocation of Xenobiotics in Plants — A Physicochemical Approach. Pesticide Sci 17, 62–63
Burken JG, Schnoor JL (1998): Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Tech 32, 3379–3385
Toppp E, Scheunert I, Attar A, Korte F (1986): Factors affecting the uptake of14C organic chemicals by plants from soil. Ecotox Env Saf 11, 219–228
Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman PE, Gordon MP, (1997): Uptake and bioremediation of trichloroethylene by hybrid poplars. Environ Sci Technol 31, 1062–1067
Narayanan M, Davis LC, Erickson LE (1995): Fate of Volatile Chlorinated Organic-Compounds in a Laboratory Chamber With Alfalfa Plants. Environ Sci Technol 29, 2437–2444
Keymeulen R, Schamp N, Van Langenhove H (1993): Factors affecting airbourne monocyclic aromatic hydrocarbon uptake by plants. Atmos Environ 27, 175–180
Hiatt MH (1999): Leaves as an indicator of exposure to airborne volatile organic compounds. Environ Sci Technol 33, 4126–4133
Collins CD, Bell, JNB, Crews C, McFarlane A (1997): Uptake and metabolism of benzene by horticultural crops. In: Fourth International Symposium on Responses of Plant Metabolism to Air Pollution and Global Change. in Fourth International Symposium on Responses of Plant Metabolism to Air Pollution and Global Change. Egmond aan Zee
Jen MS (1995): Experiemntal method to measure the gaseous uptake of14C-toluene by foliage. Environ Expt Bot 35, 389–398
Reiderer M (1990): Estimating partitioning and transport of organic chemicals in the foligae/atmosphere system: Discussion of a fugacity based model. Environ Sci Technol 24, 829–837
Collins CD, Bell JNB, Crews C (2000): Benzene accumulation in horticultural crops. Chemosphere 40, 109–114
Hiatt MH (1998) Bioconcentration factors for volatile organic compounds in vegetation. Analytical Chemistry 70, 851–856
Berthe-Corti L, Conradi B (1998): Microbial cleaning of waste gas containing volatile organic compounds in a bioreactor system with a closed gas circuit. Acta Biotechnol 18, 291–304
Caldwell ME, Suflita JM (2000): Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34, 1216–1220
Oh YS, Shareefdeen Z (1994): Interactions Between Benzene, Toluene and P-Xylene (Btx) During Their Biodegradation. Biotechnology and Bioengineering 44, 533–538
Ferro A, Kennedy J (1997): Fate of benzene in soils planted with alfalfa: Uptake, volatilization, and degradation. ACS Symposium Series 664, 223–237
Anderson TA, Walton BT (1992): Comparative plant uptake and microbial degradation of TCE in the rhizospheres of five plant species — Implications for bioremediation of contaminated surface soils. NTIS report ORN/VTM-12017, 204 p
Tsao CW, Song HG, Bartha R (1998): Metabolism of benzene, toluene, and xylene hydrocarbons in soil. Appl Environ Microbiol 64, 4924–4929
Durmishidze SV, Ugrekhelidze D, Djikia AN, Tsevelidze D (1969): The intermediate products of enzymatic oxidation of benzene and phenol. Dokl Akad Nauk SSSR 184, 466–469
Ugrekhelidze D, Korte F, Kvesitadze G (1997): Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 37, 24–9
Orchard BJ, Doucette WJ, Chard JK, Bugbee B (2000): Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers. Environ Toxicol Chem 19, 895–903
Scheunert I, Topp E, Schmitzer J, Klein W, Korte F (1985): Formation and fate of bound residues of [C-14] benzene and [C-14] chlorobenzenes in soil and plants. Ecotox Environ Saf 9, 159–170
Fisher JW (2000): Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites. Environ Health Perspect 108, 265–73
Bull RJ (2000): Mode of action of liver tumor induction by trichloroethylene and its metabolites, trichloroacetate and dichloroacetate. Environ Health Perspect 108, 241–59
Rhomberg LR (2000): Dose-response analyses of the carcinogenic effects of trichloroethylene in experimental animals. Environ Health Perspect 108, 343–58
Moore MM, Harrington-Brock K (2000): Mutagenicity of trichloroethylene and its metabolites: implications for the risk assessment of trichloroethylene. Environ Health Perspect 108, 215–23
Lash LH, Fisher JW, Lipscomb JC, Parker JC (2000): Metabolism of trichloroethylene. Environmental Health Perspectives 108: 177–200
Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998): Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes. J Environ Qual 27, 169–173
Cornejo JJ, Munoz FG, Ma CY, Stewart AJ (1999): Studies on the decontamination of air by plants. Ecotoxicology 8, 311–320
Hollowell GP, Kuykendall LD, Gillette WK, Hashem FM, Hou LH, Tatem HE, Dutta SK (1999): Genetic transfer and expression of plasmid RP4 — TOL in Sinorhizabium meliloti, Bradyrhizobium japonicum and B-elkanii. Soil Biol Biochem 31, 1811–1819
Gordon I, Sojka SA, Gordon MP (2000): US 6080915 A, Patent CA Section: 3, 8 pp, Cont-in-part of US Ser No 369,886
Walton BT, Hoylman AM, Perez MM, Anderson TA, Johnson TR, Guthrie EA, Christman RF (1994): Rhizosphere microbial communities as plant defense against toxic substances in soils. ACS Symposium Series 563: 82–92 1994
Yaws CL (1998): Chemical properties handbook: physical, thermodynamic, environmental, transport and safety properties for organic and inorganic chemicals. New York, London: McGraw-Hill
Schnabel WE, Dietz AC, Burken JG, Schnoor JL, Alvarez PJ (1997): Uptake and transformation of trichloroethylene by edible garden plants. Water Research 31: 816–824
Gibson DT, Mahedevan V, Davy JJ (1974): Bacterial metabolism of para-and meta-xylene — Oxidation of the aromatic ring. J Bacteriology 119 (3) 930–936
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Collins, C., Laturnus, F. & Nepovim, A. Remediation of BTEX and trichloroethene. Environ. Sci. & Pollut. Res 9, 86–94 (2002). https://doi.org/10.1007/BF02987319
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02987319