Biological remediation of explosives and related nitroaromatic compounds

Abstract

Nitroaromatics form an important group of recalcitrant xenobiotics. Only few aromatic compounds, bearing one nitro group as a substituent of the aromatic ring, are produced as secondary metabolites by microorganisms. The majority of nitroaromatic compounds in the biosphere are industrial chemicals such as explosives, dyes, polyurethane foams, herbicides, insecticides and solvents. These compounds are generally recalcitrant to biological treatment and remain in the biosphere, where they constitute a source of pollution due to both toxic and mutagenic effects on humans, fish, algae and microorganisms. However, relatively few microorganisms have been described as being able to use nitroaromatic compounds as nitrogen and/or carbon and energy source.

The best-known nitroaromatic compound is the explosive TNT (2,4,6-trinitrotoluene). This article reviews the bioremediation strategies for TNT-contaminated soil and water. It comes to the following conclusion: The optimal remediation strategy for nitroaromatic compounds depends on many site-specific factors. Composting and the use of reactor systems lend themselves to treating soils contaminated with high levels of explosives (e.g. at former ammunition production facilities, where areas with a high contamination level are common). Compared to composting systems, bioreactors have the major advantage of a short treatment time, but the disadvantage of being more labour intensive and more expensive. Studies indicate that biological treatment systems, which are based on the activity of the fungusPhanerochaete chrysosporium or onPseudomonas sp. ST53, might be used as effective methods for the remediation of highly contaminated soil and water.

Phytoremediation, although not widely used now, has the potential to become an important strategy for the remediation of soil and water contaminated with explosives. It is best suited where contaminant levels are low (e.g. at military sites where pollution is rather diffuse) and where larger contaminated surfaces or volumes have to be treated. In addition, phytoremediation can be used as a polishing method after other remediation treatments, such as composting or bioslurry, have taken place. Thisin-situ treatment method has the advantage of lower treatment costs, but has the disadvantage of a considerable longer treatment time. In order to improve the cost-efficiency, phytoremediation of nitroaromatics (and other organic xenobiotics) could be combined with bio-energy production. This requires, however, detailed knowledge on the fate of the contaminants in the plants as well as the development of efficient treatment methods for the contaminated biomass that minimise the spreading of the contaminants into the environment during post harvest treatment.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Achtnich C, Sieglen U, Knackmuss H-J, Lenke H (1999): Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ Toxicol Chem 18, 2416–2423

    CAS  Google Scholar 

  2. [2]

    Anderson TA, Guthrie EA, Walton BT (1993): Bioremediation. Environ Sci Technol 27, 2630–2636

    CAS  Google Scholar 

  3. [3]

    Aprill W, Sims RC (1990): Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20, 253–265

    CAS  Google Scholar 

  4. [4]

    Best EPH, Sprecher SL, Larson SL, Frederickson HL, Bader DF (1999): Environmental behaviour of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38, 3383–3396

    CAS  Google Scholar 

  5. [5]

    Bhadra R, Spangord RJ, Wayment DG, Hughes JB, Shanks JV (1999a): Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems ofMyriophyllum aquaticum. Environ Sci Technol 33, 3354–3361

    CAS  Google Scholar 

  6. [6]

    Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999b): Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33, 446–452

    CAS  Google Scholar 

  7. [7]

    Binks PR, Nicklin S, Bruce NC (1995): Degradation of three hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) byStenotrophomonas maltiphilia PB1. Appl Environ Microbiol 61, 1318–1322

    CAS  Google Scholar 

  8. [8]

    Bolwell GP, Bozak K, Zimmerlin A (1994): Plant cytochrome P450. Phytochemistry 37, 1491–1506

    CAS  Google Scholar 

  9. [9]

    Boopathy R, Kulpa CF, Wilson M (1993): Metabolism of 2,4,6-trinitrotoluene (TNT) byDesulfovibrio sp. (B strain). Appl Microbiol Biotechnol 39, 270–275

    CAS  Google Scholar 

  10. [10]

    Boopathy R, Manning J (1999): Surfactant-enhanced bioremediation of soil contaminated with 2,4,6-trinitrotoluene in soil slurry reactors. Water Environ Res 71, 119–124

    CAS  Google Scholar 

  11. [11]

    Boopathy R, Manning J, Kulpa CF (1998): A laboratory study of the bioremediation of TNT-contaminated soil using aerobic/ anoxic soil slurry reactor. Water Environ Res 70, 80–86

    CAS  Google Scholar 

  12. [12]

    Bruns-Nagel D, Breitung J, Steinbach K, Gemsa D, Von Löw E, Gozontzy T, Blotevogel K-H (1997): Bioremediation of 2,4,6-trinitrotoluene-contaminated soil by anaerobic/aerobic and aerobic methods. In: International in Situ and On-Site Bioremediation Symposium (4th: New Orleans, La.): Vol 2, pp 9–12

  13. [13]

    Bryant C, DeLuca M (1991): Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase fromEnterobacter cloacae. J Biol Chem 266, 4119–4125

    CAS  Google Scholar 

  14. [14]

    Bumpus JA, Tatarko M (1994): Biodegradation of 2,4,6-trinitrotoluene byPhanerochaete chrysosporium; identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr Microbiol 28, 185–190

    CAS  Google Scholar 

  15. [15]

    Burken JG, Schnoor JL (1998): Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32, 3379–3385

    CAS  Google Scholar 

  16. [16]

    Burken JG, Shanks JV, Thompson PL (2000): Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In Spain JC, Hughes J B, Knackmuss H-J (Eds.): Biodegradation of Nitroaromatic Compounds and Explosives. Lewis Publishers, Boca Raton, USA, pp 240–275

    Google Scholar 

  17. [17]

    Carpenter DF, McCormick NG, Cornell JH, Kaplan AM (1978): Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl Environ Microbiol 35, 949–954

    CAS  Google Scholar 

  18. [18]

    Coleman NV, Nelson DR, Duxbury T (1998): Aerobic biodégradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source of aRhodococcus sp., strain DN22. Soil Biol Biochem 30, 1159–1167

    Google Scholar 

  19. [19]

    Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996): Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy 56, 55–114

    CAS  Google Scholar 

  20. [20]

    Daun G, Lenke H, Reuss M, Knackmuss H-J (1998): Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol 32, 1956–1963

    CAS  Google Scholar 

  21. [21]

    Doyle RC, Isbister JD (1982): Treatment of TNT and RDX contaminated soils by composting. In: Proceedings of National Conference on Management of Uncontrolled Hazardous Waste Sites. November 29–December 1, Washington DC, p 209

  22. [22]

    Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K-H, Gemsa D, Von Löw E (1998): Incorporation of14C-labeled 2,4,6-trinitrotoluene metabolites into different soil fractions after anaerobic and anaerobic-aerobic treatment of soil/molasses mixtures. Environ Sci Technol 32, 3529–3535

    CAS  Google Scholar 

  23. [23]

    Duque E, Haïdour A, Godoy F, Ramos JL (1993): Construction of aPseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175, 2278–2283

    CAS  Google Scholar 

  24. [24]

    Ederer MM, Lewis TA, Crawford RL (1997): 2,4,6-Trinitrotoluene (TNT) transformation by Clostridia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18, 82–88

    CAS  Google Scholar 

  25. [25]

    Esteve-Nunez A, Ramos JL (1998): Metabolism of 2,4,6-trinitrotoluene byPseudomonas sp. JLR11. Environ Sci Technol 32, 3802–3808

    CAS  Google Scholar 

  26. [26]

    Fernando T, Aust JA (1991): Biodegradation of munition waste, TNT (2,4,6-trinitrotoluene), and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) byPhanerochaete chrysosporium. In: Tedder DW, Pohland FG (Eds): Emerging Technologies in Hazardous Waste Management II. American Chemistry Society, Washington DC, pp 214–232

    Google Scholar 

  27. [27]

    Fernando T, Bumpus JA, Aust SD (1990): Biodegradation of TNT (2,4,6-trinitrotoluene) byPhanerochaete chrysosporium. Appl Environ Microbiol 56, 1667–1671

    Google Scholar 

  28. [28]

    French CE, Nicklin S, Bruce NC (1998): Aerobic degradation of 2,4,6-trinitrotoluene byEnterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64, 2864–2868

    CAS  Google Scholar 

  29. [29]

    Funk SB, Crawford DL, Crawford RL (1996): Bioremediation of nitroaromatic compounds. In Crawford DL, Crawford RL (Eds): Bioremediation Principles and Applications. Cambridge University Press, Cambridge, pp 195–205

    Google Scholar 

  30. [30]

    Funk SB, Crawford DL, Crawford RL, Mead G, Davis-Hoover W (1995): Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil. Appl Biochem Biotechnol 51/52, 625–633

    CAS  Google Scholar 

  31. [31]

    Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993): Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59, 2171–2177

    CAS  Google Scholar 

  32. [32]

    Goheen SC, Campbell JA, Roach SK, Shi Y, Shah MM (1999): Degradation products after digestion of TNT using ferredoxin NADP+ reductase. Second International Symposium on Biodegradation of Nitroaromatic Compounds and Explosives 1999. Leesburg VA, USA

  33. [33]

    Görge E, Brandt S, Werner D (1994): Uptake and metabolism of 2,4,6-trinitrotoluene in higher plants. ESPR — Environ Sci & Pollut Res 4, 229–233

    Google Scholar 

  34. [34]

    Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Löw E, Blotevogel KH (1994): Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20, 265–284

    CAS  Google Scholar 

  35. [35]

    Green RB (1999): Pilot demonstration of sequential anaerobicaerobic bioremediation of explosives-contaminated soil. In: Alleman BC, Leeson A (Eds): Bioremediation of Nitroaromatic and Haloaromatic Compounds. Battelle Press, Columbus Ohio, USA, pp 45–50

    Google Scholar 

  36. [36]

    Green RB, Flathman PE, Hater GR, Jerger DE, Woodhull PM (1998): Sequential anaerobic-aerobic treatment of TNT-contaminated soil. In: Wickramanayake GB, Hinchee RE (Eds): Designing and Applying Treatment Technologies: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Colombus Ohio, USA, pp 271–276

    Google Scholar 

  37. [37]

    Griest WH, Stewart AJ, Tyndall RL, Caton JE, Ho C-H, Ironside KS, Caldwell WM, Tan E (1993): Chemical and toxicological testing of composted explosives contaminated soil. Environ Toxicol Chem 12, 1105–1116

    CAS  Google Scholar 

  38. [38]

    Griest WH, Tyndall RL, Stewart AJ, Caton JE, Vass AA, Ho C-H, Caldwell WM (1995): Chemical characterization and toxicological testing of windrow composts from explosives-contaminated sediments. Environ Toxicol Chem 14, 51–99

    CAS  Google Scholar 

  39. [39]

    Guiot SR, Shen CF, Hawari JA, Ampleman G, Thiboutot S (1997): Bioremediation of nitramine explosive contaminated soils. In: Tedder WD (Ed): Proc. American Chemical Society Conference on Emerging Technologies in Hazardous Waste Management IX. Pittsburgh PA, USA, Sept. 15–17, pp 341–344

  40. [40]

    Guiot SR, Shen CF, Paquet L, Breton J, Hawari JA, Thiboutot S, Ampleman G (1999): Pilot-scale anaerobic bioslurry remediation of RDX- and HMX-contaminated soils. In: Alleman BC, Leeson A (Eds): Bioremediation of Nitroaromatic and Haloaromatic Compounds. Battelle Press, Columbus Ohio, USA, pp 15–20

    Google Scholar 

  41. [41]

    Haïdour A, Ramos JL (1996): Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene byPseudomonas sp. Environ Sci Technol 30, 2365–2370

    Google Scholar 

  42. [42]

    Haigler BE, Spain JC (1993): Biodegradation of 4-nitrotoluene byPseudomonas sp. strain 4NT. Appl Environ Microbiol 59, 2239–2243

    CAS  Google Scholar 

  43. [43]

    Haigler BE, Wallace WH, Spain JC (1994): Biodegradation of 2-nitrotoluene byPseudomonas sp. strain JS42. Appl Environ Microbiol 60, 3466–3469

    CAS  Google Scholar 

  44. [44]

    Hartter DR (1985): The use and importance of nitroaromatic chemicals in the chemical industry. In Richard DE (Ed.): Toxicity of Nitroaromatic Compounds. Hemisphere Publishing Co., New York, USA, pp 1–14

    Google Scholar 

  45. [45]

    Harvey S, Fellows RJ, Cataldo DA, Bean RMJ (1990): Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography. J Chromatography 518, 361–374

    CAS  Google Scholar 

  46. [46]

    Haug RT (1993): The Practical Handbook of Composting Engineering. Lewis Publishers, Ann Arbor MI, USA

    Google Scholar 

  47. [47]

    Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998): Characterisation of metabolites in the biotransformation of 2,4,6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. Appl Environ Microbiol 64, 2200–2206

    CAS  Google Scholar 

  48. [48]

    Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000): Characterisation of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66, 2652–2657

    CAS  Google Scholar 

  49. [49]

    Hubálek M, Vanek T (1998): Degradation of 2,4,6-trinitrotoluene by cell suspension ofSolarium aviculare. International Biodeterioration and Biodegradation 42, 251

    Google Scholar 

  50. [50]

    Hughes JB, Shanks JV, Vanderford M, Lauritzen J, Bhadra R (1997): Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31, 266–271

    CAS  Google Scholar 

  51. [51]

    Hundal LS, Shea PJ, Comford SD, Powers WL, Singh J (1997): Long-term TNT sorption and bound residue formation in soil. J Environ Qual 26, 896–904

    CAS  Article  Google Scholar 

  52. [52]

    Isbister JD, Anspach GL, Kitchens JF, Doyle RC (1984): Composting for decontamination of soils containing explosives. Microbiologica 7, 47–73

    CAS  Google Scholar 

  53. [53]

    Johnson GR, Jain RK, Spain JC (2000): Properties of the trihydroxytoluene oxygenase fromBurkholderia cepacia R34: an extradiol dioxygenase from the 2,4-dinitrotoluene pathway. Arch Microbiol 173, 86–90

    CAS  Google Scholar 

  54. [54]

    Jones AM, Greer CW, Ampleman G, Thiboutot S, Lavigne J, Hawari J (1995): Biodegradability of selected highly energetic pollutants under aerobic conditions. In: Hinchee RE, Anderson DB, Hoeppel RE (Eds): Bioremediation of recalcitrant organics. Battelle Press, Columbus Ohio, USA, pp 251–257

    Google Scholar 

  55. [55]

    Kaplan DL, Kaplan AM (1982): Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl Environ Microbiol 44, 757–460

    CAS  Google Scholar 

  56. [56]

    Khan TA, Bhadra R, Hughes J (1997): Anaerobic transformation of 2,4,6-TNT and related nitroaromatic compounds byClostridium acetobutylicum. J Ind Microbiol Biotechnol. 18, 198–203

    CAS  Google Scholar 

  57. [57]

    Kitts CL, Cunningham DP, Unkefer PJ (1994): Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of familyEnterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60, 4608–4711

    CAS  Google Scholar 

  58. [58]

    Knackmuss H-J (1997): Integrated anaerobic/aerobic processes for the elimination of electron deficient xenobiotic compounds. Internat Symp Environ Biotechnol, April 1997

  59. [59]

    Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999): Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cellsin vitro. Mutat Res 444, 25–39

    CAS  Google Scholar 

  60. [60]

    Lenke H, Knackmuss H-J (1992): Initial hydrogenation during catabolism of picric acid byRhodococcus erythropolis HL24-2. Appl Environ Microbiol 58, 2933–2937

    CAS  Google Scholar 

  61. [61]

    Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss H-J (1998): Biological-treatment of TNT-contaminated soil. 2. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32, 1964–1971

    CAS  Google Scholar 

  62. [62]

    Lewis TA, Ederer MM, Crawford RL, Crawford DL (1997): Microbial transformation of 2,4,6-trinitrotoluene. J Ind Microbiol Biotechnol 18, 89–96

    CAS  Google Scholar 

  63. [63]

    Lewis TA, Goszczynski S, Crawford RL, Korus RA, Admassu W (1996): Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation byClostridium bifermentans. Appl Environ Microbiol 62, 4669–4674

    CAS  Google Scholar 

  64. [64]

    Marrs KA (1996): The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47, 127–58

    CAS  Google Scholar 

  65. [65]

    McCormick NG, Cornell JH, Kaplan AM (1981): Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42, 817–823

    CAS  Google Scholar 

  66. [66]

    McCormick NG, Feeherry FE, Levinson HS (1976): Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31, 949–958

    CAS  Google Scholar 

  67. [67]

    Medina VF, McCutcheon SC (1996): Phytoremediation: modeling removal of TNT and its breakdown products. Remediation 6, 31–45

    Google Scholar 

  68. [68]

    Michels J, Gottschalk G (1994): Inhibition of the lignin peroxidase ofPhanerochaete chrysosporium by hydroxylaminodinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl Environ Microbiol 60, 187–194

    CAS  Google Scholar 

  69. [69]

    Nebert DW, Gonzales FJ (1987): P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56, 945–993

    CAS  Google Scholar 

  70. [70]

    Nepovím A, Hubálek M, Vanek T (1999): Enzymatic degradation of 2,4,6-TNT by cell suspension culture ofRheum palmatum. In: Plant enzymes involved in the metabolism of organic pollutants. COST Action 837. Geneva, COST 1999, pp 13

    Google Scholar 

  71. [71]

    Nishino SF, Paoli GC, Spain JC (2000): Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66, 2193–2147

    Google Scholar 

  72. [72]

    Palazzo AJ, Leggett DC (1986): Effect and disposition of TNT in a terrestrial plant. J Environ Qual 15, 49–52

    CAS  Google Scholar 

  73. [73]

    Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998): Transformation of 2,4,6-trinitrotiluene by the aquatic plantMyriophylum spicatum. Environ Toxicol Chem 17, 2266–2273

    CAS  Google Scholar 

  74. [74]

    Pennington JC, Hayes CA, Myers KF, Ochman M, Gunnison D, Felt DR, McCormick EF (1995): Fate of 2,4,6-trinitrotoluene in a simulated compost system. Chemosphere 30, 429–438

    CAS  Google Scholar 

  75. [75]

    Pflugmacher S, Schröder P, Sandermann H (2000): Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54, 267–73

    CAS  Google Scholar 

  76. [76]

    Pickett CB, Lu AYH (1989): Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58, 743–764

    CAS  Google Scholar 

  77. [77]

    Preuss A, Rieger P-G (1995): Anaerobic transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. In Spain JC (Ed.): Biodegradation of Nitroaromatic Compounds. Plenum Press, New York, USA, pp 69–85

    Google Scholar 

  78. [78]

    Rhys-Williams W, Taylor SC, Williams PA (1993): A novel pathway for catabolism of 4-nitrotoluene byPseudomonas. J Gen Microbiol 139, 1967–1972

    CAS  Google Scholar 

  79. [79]

    Richman M (1996): Terrestrial plants tested for groundwater cleanup. Water Environ Technol 8, 17–19

    Google Scholar 

  80. [80]

    Rieger PG, Knackmuss H-J (1995): Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds. In: Spain JC (Ed): Biodegradation of Nitroaromatic Compounds. Plenum Press, New York, USA., pp 1–18

    Google Scholar 

  81. [81]

    Rivera R, Medina VF, Larson SL, McCutcheon SC (1998): Phytoremediation of TNT contaminated groundwater. J Soil Contam 7, 511–529

    CAS  Google Scholar 

  82. [82]

    Sandermann H, Schmitt R, Eckey H, Bauknecht T (1991): Plant biochemistry of xenobiotics: isolation and properties of soybean O- and N-glucosyl and O- and N-malonyltransferases for chlorinated phenols and anilines. Arch Biochem Biophys 287, 341–350

    CAS  Google Scholar 

  83. [83]

    Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997): Screening for fungi intensively mineralizing 2,4,6-trini-trotoluene. Appl Microbiol Biotechnol 47, 452–457

    CAS  Google Scholar 

  84. [84]

    Scheidemann P, Klunk A, Sens C, Werner D (1998): Species dependent uptake and tolerance of nitroaromatic compounds by higher plants. J Plant Physiol 152, 242–247

    CAS  Google Scholar 

  85. [85]

    Schneider K, Oltmanns J, Radenberg T, Schneider T, Pauly-Mundegar D (1996): Uptake of nitroaromatic compounds in plants. ESPR - Environ Sci & Pollut Res 3, 135–138

    CAS  Google Scholar 

  86. [86]

    Schnoor JL (2000): Phytoremediation of toxic organic chemicals at hazardous waste sites. COST Action 837. Workshop Phytoremediation 2000 — State of the Art in Europe — An intercontinental Comparison, pp 21–22

  87. [87]

    Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995): Phytoremediation of organic and nutrient contaminations. Environ Sci Technol 29, 318–323

    Google Scholar 

  88. [88]

    Shah MM, Campbell JA (1997): Transformation of nitrobenzene by ferredoxin NADP oxidoreductase from spinach leaves. Biochem Biophys Res Commun 241, 794–796

    CAS  Google Scholar 

  89. [89]

    Shah MM, Spain JC (1996): Elimination of nitrite from the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by ferredoxin NADP oxidoreductase from spinach. Biochem Biophys Res Com 220, 563–568

    CAS  Google Scholar 

  90. [90]

    Shen CF, Hawari JA, Ampleman G, Thiboutot S, Guiot SR (2000): Origin of p-cresol in the anaerobic degradation of trinitrotoluene. Can J Microbiol 46, 119–124

    CAS  Google Scholar 

  91. [91]

    Spain JC, Nishino SF, Greene MR, Forbort JE, Nogalski NA, Unterman R, Riznychok WM, Thompson SE, Sleeper PM, Boxwell MA (1999): Field demonstration of FBR for treatment of nitrotoluenes in groundwater. In: Alleman BC, Leeson A (Ed.) Bioremediation of Nitroaromatic and Haloaromatic Compounds, Bartelle Press, Columbus Ohio, USA, pp 7–14

    Google Scholar 

  92. [92]

    Spanggord RJ, Mortelmans KE, Griffing AF, Simmon VF (1982): Mutagenicity inSalmonella typhimurium and structure-activity relationships of wastewater components emanating from the manufacture of trinitrotoluene. Environ Mutagen 4, 163–179

    CAS  Google Scholar 

  93. [93]

    Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991): Biodegradation of 2,4-dinitrotoluene by aPseudomonas sp. Appl Environ Microbiol 57, 3200–3205

    CAS  Google Scholar 

  94. [94]

    Spiess T, Desiere F, Fischer P, Spain JC, Knackmuss J-H, Lenke H (1998): A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl Environ Microbiol 64, 446–452

    CAS  Google Scholar 

  95. [95]

    Spiker JK, Crawford DL, Crawford RL (1992): Influence of TNT (2,4,6-trinitrotoluene) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungusPhanerochaete chrysosporium. Appl Environ Microbiol 58, 3199–3202

    CAS  Google Scholar 

  96. [96]

    Stahl JD, Aust SD (1993a): Plasma membrane dependent reduction of 2,4,6-trinitrotoluene byPhanerochaete chrysosporium. Biochem Biophys Res Comm 192, 471–476

    CAS  Google Scholar 

  97. [97]

    Stahl JD, Aust SD (1993b): Metabolism and detoxification of TNT byPhanerochaete chrysosporium. Biochem Biophys Res Comm 192, 477–482

    CAS  Google Scholar 

  98. [98]

    Stahl JD, Aust SD (1995): Biodegradation of 2,4,6-trinitrotoluene by the white rot fungusPhanerochaete chrysosporium. In Spain JC (Ed.): Biodegradation of Nitroaromatic Compounds. Plenum Press, New York, USA, pp 177–133

    Google Scholar 

  99. [99]

    Sublette KL, Ganapathy EV, Schwartz S (1992): Degradation of munition wastes byPhanerochaete chrysosporium. Appl Biochem Biotechnol 34/35, 709–723

    Google Scholar 

  100. [100]

    Sun WH, Horst GL, Drijber RA, Elthon TE (2000): Fate of 2,4,6-trinitrotoluene in axenic sand culture systems containing smooth bromegrass. Environ Toxicol Chem 19, 2038–2046

    CAS  Google Scholar 

  101. [101]

    Tan E, Ho C-H, Griest WH, Tyndall RL (1992): Mutagenicity of trinitrotoluene and its metabolites formed during composting. J Toxicol Environ Health 36, 165–172

    CAS  Article  Google Scholar 

  102. [102]

    Tatsumi K, Inoue A, Yoshimura H (1981): Mode of reactions between xanthine oxidase and aromatic nitrocompounds. J Pharmacobiodyn 4, 101–108

    CAS  Google Scholar 

  103. [103]

    Thompson PL, Ramer LA, Schnoor JL (1998): Uptake and transformation of TNT by hybrid poplar trees. Environ Sci Technol 32, 975–980

    CAS  Google Scholar 

  104. [104]

    Thompson PL, Ramer LA, Schnoor JL (1999): Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in the poplar trees. Environ Toxicol Chem 18, 279–284

    CAS  Google Scholar 

  105. [105]

    Valli K, Brock BJ, Joshi DK, Gold MH (1992): Degradation of 2,4-dinitrotoluene by the lignin-degrading fungusPhanerochaete chrysosporium. Appl Environ Microbiol 58, 221–228

    CAS  Google Scholar 

  106. [106]

    Vanderford M, Shanks JV, Hughes JB (1997): Phytotransformation of trinitrotoluene (TNT) and distribution of metabolic products inMyriophyllum aquaticum. Biotechnol Lett 19, 277–280

    CAS  Google Scholar 

  107. [107]

    Vanek T, Schwitzguébel JP (2000): Plant biotechnology for the removal of organic pollutants and toxic metals from wastewaters and contaminated sites. In: The Utilisation of Bioremediation to Reduce Soil Contamination: Problems and Solutions. NATO Advanced Research Workshop. Liblice Castle, Czech Republic

    Google Scholar 

  108. [108]

    Vasilyeva GK, Oh B-T, Shea PJ, Drijber RA, Kreslavcki VD, Minard R, Bollag J-M (2000): Aerobic TNT reduction via 2-hydroxylamino-4,6-dinitrotoluene byPseudomonas aeruginosa strain MX isolated from munitions-contaminated soil. Biorem J 4, 111–124

    CAS  Google Scholar 

  109. [109]

    Verschueren K (1977): Handbook of Environmental Data on Organic Chemicals. Third Edition. John Wiley and Sons Publishers. New York, USA

    Google Scholar 

  110. [110]

    Vorbeck C, Lenke H, Fischer P, Knackmuss H-J (1994): Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by aMycobacterium strain. J Bacteriol 176, 932–934

    CAS  Google Scholar 

  111. [111]

    Vorbeck C, Lenke H, Fisher P, Spain JC, Knackmuss H-J (1998): Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64, 246–252

    CAS  Google Scholar 

  112. [112]

    Wang CY, Zheng D, Hughes JB (2000): Stability of hydroxylamino- and amino-intermediates from reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene. Biotechnol Lett 22, 15–19

    CAS  Google Scholar 

  113. [113]

    Williams RT, Ziegenfuss PS, Sisk WE (1992): Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9, 137–144

    Google Scholar 

  114. [114]

    Won WD, Di Savo LH, Ng J (1976): Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31, 576–580

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniël van der Lelie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Snellinx, Z., Nepovím, A., Taghavi, S. et al. Biological remediation of explosives and related nitroaromatic compounds. Environ. Sci. & Pollut. Res 9, 48–61 (2002). https://doi.org/10.1007/BF02987316

Download citation

Keywords

  • Biological remediation
  • nitroaromatic compounds
  • phytoremediation
  • remediation, soil and water
  • soil, TNT, remediation
  • TNT (2,4,6-trinitrotoluene)
  • trinitrotoluene
  • water, TNT, remediation