Skip to main content
Log in

Exploiting plant metabolism for the phytoremediation of persistent herbicides

  • Phytoremediation: Persistent Herbicides
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Weed control by herbicides has helped us to create the green revolution and to provide food for at least the majority of human beings living today. However, some herbicides remain in the environment and pose an ecological problem. The present review describes the properties and fate of four representative herbicides known to be presistent in ecosystems. Metabolic networks are depiced and it is concluded that removal of these comopounds by the ecologically friendly technique of phytoremediation is possible. The largest problem is seen in the uptake of the compounds into suitable plants and the time needed for such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderson TA, Coats JR (1995): Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. Journal of Science and Health B30, 473–484

    CAS  Google Scholar 

  • Anon A (1979): Herbicide residue levels and redrilling of failed cereals. MAFF ADAS South East Region Agricultural Science Service. Annual Report, HMSO, London

    Google Scholar 

  • Behrendt H, Brüggemann R (1993): Modelling the fate of organic chemicals in the soil plant environment: Model study of root uptake of pesticides. Chemosphere 12, 2325–2332

    Article  Google Scholar 

  • Bester K, Hühnerfuss H, Brockmann U, Rick HJ (1995): Biological effects of triazine herbicide contamination on marine phytoplankton, Arch Environ Contam Toxicol 23, 277–283

    Article  Google Scholar 

  • Bintein S, Devillers J (1996): Evaluating the environmental fate of lindane in France. Chemosphere 32, 2427–2440

    Article  CAS  Google Scholar 

  • Blair AM, Martin TD, Brain P, Cotterill EG (1991): The interaction between planting depth of four winter wheat cultivars,Alopecurus myosuroides Huds. andBromus sterilis L. and their susceptibility to post-emergent applications of isoproturon and chlortoluron. Weed Res 31, 285–293

    CAS  Google Scholar 

  • Blair AM, Martin TD, Walker A, Welch SJ (1990): Measurement and prediction of isoproturon movement and persistence in three soils. Crop Protection 9, 289–294

    Article  CAS  Google Scholar 

  • Buffaut P (1992): Produits phytosanitaires: teneures actuelles des eaux en France. Colloque Phyt’eau — Produits Phytosanitaires — Usages Agricoles et Connexe 21, 5–19

    Google Scholar 

  • Castelfranco P, Foy CL, Deutsch DB (1961): Nonenzymatic detoxication of 2-chloro-4,6-bis (etymalmino)-s-triazine (simazíne) by extracts ofZea mays. Weed 9, 580

    Article  CAS  Google Scholar 

  • Cole DJ, Cummings I, Hatton PJ, Dixon D, Edwards R (1997): Glutathione transferases in crops and major weeds. In: Hatzios KK (Ed): Regulation of enzymatic systems detoxifying xenobiotics in plants, NATO ASI series Vol 37, Kluwer Academic Publishers, Dordrecht, pp 139–154

    Google Scholar 

  • Cottingham CK, Hatzios KK (1992): Basis of differential tolerance of two corn hybrids (Zea mays) to metolachlor. Weed Sci 40, 359–363

    CAS  Google Scholar 

  • Cottingham CK, Hatzios KK, Meredith SA (1993): Comparative responses of selected corn (Zea mays) hybrids to EPTC and metolachlor. Weed Res 33, 161–170

    Article  CAS  Google Scholar 

  • Coupland D (1991): Detoxification of herbicides in plants. In: Caseley JC, Cussan GW, Atkin RK (Eds): Herbicide resistance in weeds and crops, Wiley, New York, pp 263–278

    Google Scholar 

  • Dixon DP, Cole DJ, Edwards R (1998): Purification, regulation and cloning of a glutathione transferase (GST) from Maize resembling the auxin-inducible type-Ill GSTs. Plant Molecular Biology 36, 75–87

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000): Plant glutathione S-transferases: Enzymes with multiple functions in sickness and in health. Trends in Plant Science 5, 193–198

    Article  CAS  Google Scholar 

  • European Commission’s Directive on Drinking Water 80-778-EEC (1980): European Commission, Brussels

  • Farago S, Kreuz K, Brunold C (1993): Decreased glutathione levels enhance the susceptibility of maize seedlings to metolachlor. Pestic Biochem Physiol 47, 199–205

    Article  CAS  Google Scholar 

  • Fedke C (1982): Biochemistry and physiology of herbicide action, Springer Verlag, Berlin Heidelberg New York, 148–158

    Google Scholar 

  • Frear DS, Swanson HR, Tanaka FS (1972): Herbicide metabolism in plants. In: Runeckles VC, Tso TC (Eds): Structural and functional aspects of phytochemistry. Recent advances in phytochemistry, Acad Press, New York, 225–247

    Google Scholar 

  • Fuerst EP (1987): Understanding the mode of action of the chloroacetanilide and thiocarbammate herbicides. Weed Technol 1, 270–277

    CAS  Google Scholar 

  • Fuertet-Mazel A, Grollier T, Grouselle M, Ribeyre F, and Boudou A (2000): Experimental study of bioaccumulation and effects of the herbicide isoproturon on freshwater rooted macrophytes (Elodea densa andLudwigia natans). Chemosphere 32, 1499–1512

    Article  Google Scholar 

  • Gaillard C, Dufaud A, Tommasini R, Kreuz K, Amrhein N, Martinoia E (1994): A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide. FEBS Letters 352 [FEBS 14574], 219–221

    Article  CAS  Google Scholar 

  • Gläßgen WE, Komoßa D, Bohnenkämper O, Haas M, Hertkorn N, May RG, Szymczak W, Sandermann H (1999): Metabolism of the herbicide Isoproturon in wheat and soybean cell suspension cultures. Pestic Biochem Physiol 63, 97–113

    Article  Google Scholar 

  • Good NE (1963) Carbon dioxide and the Hill reaction. Plant Physiol 38, 298–304

    CAS  Google Scholar 

  • Goolsby DA, Thurman EM, Pomes ML, Meyer MT, Battaglin WA (1997): Herbicides and their metabolites in rainfall-Origin, transport, and deposition patterns across the Midwestern and Northeastern United States, 1990–1991: Environmental Science & Technology 31, 1325–1333

    Article  CAS  Google Scholar 

  • Glotfelty DE (1978) The atmosphere as a sink for applied pesticides. J Air Pollut Control Assoc 28, 917–921

    CAS  Google Scholar 

  • Glotfelty DE, Williams GH, Freeman HP, Leech MM (1990) Regional atmospheric transport and deposition of pesticides in Maryland. In: Kurtz D (Ed): Long Range Transport of Pesticides, Lewis Publishing Co, Chelsea, pp 199–222

    Google Scholar 

  • Gronwald JW (1989): Influence of herbicide safeners on herbicide metabolism. In: Hatzios KK, Hoagland RE (Eds): Crop safeners for herbicides: development, uses and mechanisms of action, Academic Press, San Diego, pp 163–175

    Google Scholar 

  • Gross D, Laanio T, Dupuis G, Esser HO (1979): The metabolic behaviour of chlortoluron in wheat and soil. Pestic Biochem Physiol 10, 49

    Article  CAS  Google Scholar 

  • Gunderson EL (1995): FDA Total Diet Study, July 1986–April 1991, Dietary Intakes of Pesticides, Selected Elements, and Other Chemicals, Journal of AOAC Intl 78, 6

    Google Scholar 

  • Haas M (1997): Metabolisierung von Xenobiotika durch pflanzliche Zellkulturen und Enzyme. Dissertation TU-München. Shaker Verlag, Aachen, Germany

    Google Scholar 

  • Han S, Hatzios KK (1991): Effects of the herbicide pretilachlor and the safener fenclorium on glutathione content and glutathionedependent enzyme activity of rice. Zeitschrift für Naturforschung 46c, 861–865

    Google Scholar 

  • Hatzios KK (1997): Regulation of xenobiotics degrading enzymes with herbicide safeners. In: Hatzios KK (Ed): Regulation of enzymatic systems detoxifying xenobiotics in plants, NATO ASI series Vol 37, Kluwer Academic Publishers, Dordrecht, pp 275–288

    Google Scholar 

  • Inui H, Kodama T, Ohkawa Y, Ohkawa H (2000): Herbicide metabolism and cross-tolerance in transgenic potato plants co-expressing human CYP1A1, CYP2B6, and CYP2C19. Pestic Biochem Physiol 66, 116–129

    Article  CAS  Google Scholar 

  • Izryk GP, Fuerst EP (1997): Characterization and induction of maize glutathione S-transferases involved in herbicide detoxification. In: Hatzios KK (Ed): Regulation of enzymatic systems detoxifying xenobiotics in plants, NATO ASI Series Vol 37, Kluwer Academic Publishers, Dordrecht, pp 155–170

    Google Scholar 

  • Jepson I, Lay VJ, Holt DC, Bright SWJ, Greenland AJ (1994): Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Molecular Biology 26, 1855–1866

    Article  CAS  Google Scholar 

  • Jepson I, Holt DC, Roussel V, Wright SY, Greenland AJ (1997): Transgenic plant analysis as a tool for the study of glutathione Stransferases. In: Hatzios K.K. (Ed): Regulation of enzymatic systems detoxifying xenobiotics in plants, NATO ASI Series Vol 37, Kluwer Academic Publishers, Dordrecht, pp 313–323

    Google Scholar 

  • Kreuz K, Gaudin J, Ebert E (1989): effects of the safeners CGA 154281, oxabetrinil and fenclorim on uptake and degradation of metolachlor in corn (Zea mays L.) seedlings. Weed Research 29, 399–405

    Article  CAS  Google Scholar 

  • Kulshresta G (1982): Hydrolysis of isoproturon in aqueous medium and its persistence in soil and plants. Ind J Weed Sci 14, 96–102

    Google Scholar 

  • Lamoureux GL and Rusness DG (1989a): The role of glutathione and glutathione S-transferases in pesticide metabolism, selectivity and mode of action in plants and insects. In: Dolphin D, Poulson R, Avramovic O (Eds): Glutathione: Chemical biochemical and medical aspects, Vol IIIB, Ser: Enzyme and Cofactors, J. Wiley & Sons, New York, pp 153–196

    Google Scholar 

  • Lamoureux GL and Rusness DG (1989b): Propachlor metabolism in soybean plants, excised soybean tissues, and soil. Pestic Biochem Physiol 34, 187–204

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG, Schröder P, Rennenberg H (1991): Diphenyl ether herbicide metabolism in a spruce cell suspension culture: The identification of two novel metabolites derived from a glutathione conjugate. Pestic Biochem Physiol 39, 291–301

    Article  CAS  Google Scholar 

  • Lamoureux GL, Simoneaux B, Larson J (1998): The metabolism of atrazine and related 2-chloro-4,6-bis(alkylamino)-s-triazines in plants. In: Ballantine LG, McFarland JE, Hacket DS (Eds): Triazine Herbicides: Risk Assessment, Washington, D.C., American Chemical Society

    Google Scholar 

  • Le Baron MH, McFarland JE, Simoneaux BJ (1988): Metolachlor. In: Kearney PC, Kaufmann DD (Eds): Herbicides: Chemistry, Degradation and Mode of Action, Vol 3, Marcel Dekker, New York, pp 336–383

    Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995): Isolation and characterization of aPseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61, 1451–1457

    CAS  Google Scholar 

  • Marrs KA (1996): The functions and regulation of glutathione Stransferases in plants. Annu Rev Plant Physiol 47, 127–158

    Article  CAS  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993): ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364, 247–249

    Article  CAS  Google Scholar 

  • Masaphy S, Henis Y, Levanon D (1996): Manganese-enhanced biotransformation of atrazine by the white rot fungusPleurotus pulmonarius and its correlation with oxidation activity. Appl Environ Microbiol 62, 3587–3593

    CAS  Google Scholar 

  • Matthes B, Schmalfuss J, Boger P (1998): Chloroacetamide mode of action, II: Inhibition of very long chain fatty acid synthesis in higher plants. Z Naturforsch 53c, 1004–1011

    Google Scholar 

  • Mauch F, Dudler R (1993): Differential induction of distinct glutathione-s-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102, 1193–1201

    Article  CAS  Google Scholar 

  • Mazur BJ, Falco SC (1989): The development of herbicide resistant crops. Annu Rev Plant Physiol Plant Mol Biol 40, 441–470

    Article  CAS  Google Scholar 

  • McGonigle B, Keeler S, Lau S-MC, Koeppe M, O’Keefe DP (2000): A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiology 124, 1105–1120

    Article  CAS  Google Scholar 

  • Mirgain I, Schenck C, Monteil H (1993): Atrazine Contamination of Groundwaters in Eastern France in Relation to the Hydrogeological Properties of the Agricultural Land. Environmental Technology 14, 741–751

    CAS  Google Scholar 

  • Moreland DE, Corbin FT, Novitzky WP, Parker CE, Tomer KB (1990): Metabolism of metolachlor by a microsomal fraction isolated from grain sorghum (Sorghum bicolor) shoots. Z Naturforsch 45c, 558–564

    Google Scholar 

  • Moreland DE, Corbin FT, McFarland JE (1993): Effects of safeners on the oxidation of multiple substrates by grain sorghum microsomes. Pestic Biochem Physiol 45, 43–53

    Article  CAS  Google Scholar 

  • Moreland DE, Corbin FT, Fleischmann TJ, McFarland JE (1995): Partial characterization of microsomes isolated from mung bean cotyledons. Pestic Biochem Physiol 52, 98–108

    Article  CAS  Google Scholar 

  • Moss SR (1979): The influence of tillage and method of straw disposal on the survival and growth of black grassAlopecurus myosuroides and its control by chlortoluron and isoproturon. Ann Appl Biol. 91, 91–100

    Article  CAS  Google Scholar 

  • O’Connell K, Breaux E, Fraley R (1988): Different rates of metabolism of two chloroacetamide herbicides in pioneer 3320 corn. Plant Physiol 86, 359–363

    CAS  Google Scholar 

  • Obrigawitch T, Abernathy JR, Gipson JR (1980): Response of yellow (Cyperus esculentus) and purple (Cyperus rotundus) nutsage to metolachlor. Weed Sci 28, 708–715

    CAS  Google Scholar 

  • Ostrofsky A, Jellison J, Smith K, Shortle W (1997): Cation concentrations in red spruce wood undergoing fungal biodegradation. Can J For 27, 567–571

    CAS  Google Scholar 

  • Perkow W (1988): Wirksubstanzen der Pflanzenschutz- und Schädlingsbekämpfungsmittel. Paul Parey, Berlin-Hamburg

    Google Scholar 

  • Ponte-Freitas A, Haddad G, Tissut M, Ravanel P (1991): Distribution of isoproturon, a photosystem II inhibitor, inside wheat leaf fragments. Plant Physiol Biochem 29, 67–74

    CAS  Google Scholar 

  • Raveton M, Ravanel P, Serre AM, Nurit F, Tissut M (1997): Kinetics of uptake and metabolism of atrazine in model plant systems. Pestic Sci 49, 157–163

    Article  CAS  Google Scholar 

  • Rea PA (1999): MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50, 895–913

    Article  CAS  Google Scholar 

  • Riechers DE, Irzyk GP, Jones SS, Fuerst EP (1997): Partial characterization of glutathione S-transferases from wheat (Triticum spp) and purification of a safener-induced glutathione S-transferase fromTriticum tauschii. Plant Physiol 114, 1461–1470

    Article  CAS  Google Scholar 

  • Roberts TE (1998): Metabolic pathways of agrochemicals. Part 1: Herbicides and and plant growth regulators. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Rossini L, Jepson J, Greenland AE, Sari Gorla M (1996): Characterization of glutathione S-transferase isoforms in three maize inbred lines exhibiting differential sensitivity to alachlor. Plant Physiol 112, 1595–1600

    CAS  Google Scholar 

  • Rossini L, Frova C, Pè ME, Mizzi L, Sari Gorla M (1998): Alachlor regulation of maize glutathione S-transferase genes. Pestic Biochem Physiol 60, 205–211

    Article  CAS  Google Scholar 

  • Sánchez-Fernández R, Davies TGE, Coleman, JOD, Rea PA (2001): TheArabidopsis thaliana ABC protein superfamily: a complete inventory. J Biol Chem 276, 30231–30244

    Article  Google Scholar 

  • Sandermann H, Schmitt H, Eckey R, Bauknecht T (1991): Plant biochemistry of xenobiotics: Isolation and properties of soybean O- and N-glucosyl- and O- and N-malonyltransferases for chlorinated phenols and anilines. Arch Biochem Biophys 287, 341–350

    Article  CAS  Google Scholar 

  • Sari Gorla M, Ferrario S, Rossini L, Frova C, Villa M (1993): Developmental expression of glutathione S-transferase in maize and its possible connection with herbicide tolerance. Euphytica 67, 221–230

    Article  Google Scholar 

  • Schmalfuss J, Matthes B, Knuth K, Boger P (2000): Inhibition of Acyl-CoA elongation by chloroacetamide herbicides in microsomes from leek seedlings. Pestic Biochem Physiol 67, 25–35

    Article  CAS  Google Scholar 

  • Schmitt R, Sandermann H (1982): Specific localisation of β-glucoside conjugates of 2,4-dichlorophenoxyacetic acid in soybean vacuoles, Z. Naturforsch 37c, 772–777

    CAS  Google Scholar 

  • Schröder P (1997): Fate of glutathione S-conjugates in plants: Cleavage of the glutathione moiety. In: Hatzios KK (Ed): Regulation of enzymatic systems detoxifying xenobiotics in plants, NATO ASI Series Vol 37, Kluwer Academic Publishers, Dordrecht, The Netherlands, 233–244

    Google Scholar 

  • Scheunert I, Schröder P (1998): Formation, Characterization and Release of Non-Ectractable Residues of [C-14]-Labeled Organic Xenobiotics in Soils. ESPR — Environ Sci & Pollut Res 5, 238–245

    Article  CAS  Google Scholar 

  • Schülein J, Gläßgen WE, Hertkorn N, Schröder P, Sandermann H, Kettrup A (1996): Detection and identification of the herbicide isoproturon and its metabolites in soil solution, runoff and surface water after a heavy rainfall event. Int J Env Analyt Chem 65, 193–202

    Article  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Turner NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986): Engineering herbicide tolerance in transgenic plants. Science 233, 478–481

    Article  CAS  Google Scholar 

  • Shao ZQ, Behki R (1995): Cloning of the genes for degradation of the herbicides EPTC (S-Ethyl Dipropylthiocarbamate) and Atrazine fromRhodococcus sp. Strain TE1. Applied and Environmental Microbiology 61, 2061–2065

    CAS  Google Scholar 

  • Shimabukuro RH, Frear DS, Swanson HR, Walsh WC (1971): Glutathione conjugation. An enzymatic basis for atrazine resistance in corn. Plant Physiol 47, 10–14

    Article  CAS  Google Scholar 

  • Skipsey M, Andrews CJ, Towson JK, Jepson I, Edwards R (1997): Substrate and thiol specificity of a stress-inducible glutathione transferase from soybean. FEBS Lett 409, 370–374

    Article  CAS  Google Scholar 

  • Smith AE (1988): Transformations in soil, environmental chemistry of herbicides, R. Grover, Boca Raton, FLA, CRC Press, pp 171–200

    Google Scholar 

  • Tasli S, Patty L, Boetti H, Ravanel P, Vachaud G, Scharff C, Favre-Bonvin J, Kaouadji M, Tissut M (1996): Persistence and leaching of atrazine in corn culture in the experimental site of La Cote Saint Andre (Isere, France). Arch Environ Contam Toxicol 30, 203–212

    Article  CAS  Google Scholar 

  • Thurman E. M., Goolsby D.A., Aga D.S., Pomes M.L., Meyer M.T. (1996): Occurrence of alachlor and its sulphonated metabolite in rivers and reservoirs of the midwestern United States: the importance of sulphonation in the transport of chloroacetanilide herbicides. Environ. Science & Technology 30, 569–574

    Article  CAS  Google Scholar 

  • Timmerman KP (1989): Molecular charaterization of corn glutathione S-transferase isozymes involved in herbicide detoxication. Physiologia Plantarum 77, 465–471

    Article  CAS  Google Scholar 

  • Wiegand RC, Shah DM, Mozer TJ, Harding EI, Diaz-Collier J, Saunders C, Jaworsky EG, Tiemeier DC (1986): Messenger RNA encoding a glutathione S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment. Plant Mol Biol 7, 235–243

    Article  CAS  Google Scholar 

  • Wilson RD, Geronimo J, Armbruster JA (1997): 2,4-D Dissipation in field soils after applications of 2,4-D dimethylamine salt and 2,4-D 2-ethylhexyl ester. Environmental Toxicology and Chemistry 16, 1239–1246

    Article  CAS  Google Scholar 

  • Wittmann C, Hock B (1991): Development of an ELISA for the analysis of atrazine metabolites deethylatrazine and deisopropylatrazine. J Agric Food Chem 39, 1194–1200

    Article  CAS  Google Scholar 

  • Wolf AE, Dietz KJ, Schroeder P (1996): Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters 384, 31–34

    Article  CAS  Google Scholar 

  • Wu J, Omokawa H, Hatzios KK (1996): Glutathione S-transferase activity in unsafened and fenchlorim-safened rice (Oryza sativa). Pestic Biochem Physiol 54, 220–229

    Article  CAS  Google Scholar 

  • Wu J, Cramer CL, Hatzios KK (1999): Characterization of two cDNAs encoding glutathione S-transferases in rice and induction of their transcription by the herbicide safener fenchlorim. Physiol Plantarum 105, 102–108

    Article  CAS  Google Scholar 

  • Yadav A, Malik RK (1988): Persistence of isoproturon in different soils. Haryana Agric Univ J Res 18, 198–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, J.O.D., Frova, C., Schröder, P. et al. Exploiting plant metabolism for the phytoremediation of persistent herbicides. Environ. Sci. & Pollut. Res 9, 18–28 (2002). https://doi.org/10.1007/BF02987314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987314

Keywords

Navigation