Skip to main content

Advertisement

Log in

Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment

  • Phytoremediation: Persistent Pesticides
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The environmental problems that have arisen from the use of persistent pesticides in the past, and potential sources of further contamination have been discussed. The potential and limitations of phytoremediation for removal of pesticides in the environment have been reviewed. The enzymatic processes in plants that are known to be involved in phytodegradation of pesticides, and possibilities for enhancing them have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Edwards CA (1977): Environmental aspects of the usage of pesticides in developing countries Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent.42, 853–868

    CAS  Google Scholar 

  2. Levine RS, Doull J (1992): Global estimates of acute pesticide morbidity and mortality. Rev Environ Contam Toxicol129, 29–50

    CAS  Google Scholar 

  3. Halfon E, Galassi S, Bruggemann R, Provini A (1996): Selection of priority properties to assess environmental hazard of pesticides. Chemosphere33, 1543–1562

    CAS  Google Scholar 

  4. De Bruijn J, Busser F; Seinen W, Hermens J (1989): Determination of octanol-water partition coefficients for hydrophobic organic chemicals with the slow-stirring method. Environ Toxicol Chem8, 499–512

    Google Scholar 

  5. Fisk AT, Rosenberg B, Cymbalisty CD, Stern GA, Muir DCG (1999): Octanol/water partition coefficients of toxaphene congeners determined by the ‘slow-stirring’ method. Chemosphere39, 2549–2562

    CAS  Google Scholar 

  6. Komoba D, Langebartels C, Sandermann Jr H (1995): Metabolic processes for organic chemicals in plants in Plant Contamination: Modelling and Simulation of Organic Chemical Processes, Trapp S, McFarlane JC (Eds) Lewis Publishers 1995 pp 69–103

  7. Hoyer AP, Grandjean P, Jorgensen T, Brock JW, Hartvig HB (1998): Organochlorine exposure and risk of breast cancer. Lancet352, 1816–1820

    CAS  Google Scholar 

  8. Phillips B, Harrison P (1999): Overview of the endocrine disrupters issue in Endocrine Disrupting Chemicals. Hester RE Harrison RM (Eds) The Royal Society of Chemistry Cambridge UK pp 151

    Google Scholar 

  9. Vos JG, Dybing E, Greim HA, Ladefoged O, Lambre C, Tarazona JV, Brandt I, Vethaak AD (2000): Health effects of endocrinedisrupting chemicals on wildlife with special reference to the European situation. Crit Rev Toxicol30, 71–133

    CAS  Google Scholar 

  10. Hascoet M, Lavaur E de (1975): Contamination of persistent organochlorine compounds Levels observed in wild fauna and in certain vege Table products used as fodder for dairy animals Publication of the Commission of the European Communities EUR 5196, 119–135 [in French]

  11. Fromberg A, Cleemann M, Carlsen L (1999): Review on persistent organic pollutants in the environment of Greenland and Faroe Islands. Chemosphere38, 3075–3093

    CAS  Google Scholar 

  12. Longanathan BG, Kannan K (1994): Global organochlorine contamination trends: an overview. AMBIO23, 187–191

    Google Scholar 

  13. Fisher BE (1999): Most unwanted. Environ Health Perspect107, A18–23

    CAS  Google Scholar 

  14. Oehme M (1991): Dispersion and transport paths of toxic persistent organochlorines to the Arctic-levels and consequences. Sci Total Environ106, 43–53

    CAS  Google Scholar 

  15. Thomas DJ, Tracey B, Marshall H, Norstrom RJ (1992): Arctic terrestrial ecosystem contamination. Sci Total Environ122, 135–64

    CAS  Google Scholar 

  16. Stobiecki S, Pruszynski S, Silowiecki A, Czaplicki E (1994): Problems connected with the disposal of undesirable pesticides in Poland. International HCH and halogenated pesticides Forum (compilation of 1st and 2nd HCH-forum) Proceedings Magdeburg 1994

  17. Stobiecki S (1997): Progress and developments on unwanted pesticides in Poland 4th Forum HCH and unwanted pesticides 15–16 January 1996, Poznan Poland

  18. Strauss I (1996): Current situation of unused pesticides in Latvia and state strategy for solving the problem 4th Forum HCH and unwanted pesticides 15–16 January 1996 Poznan Poland pp 79–80

  19. Samersov V, Skuriat A (1996): Ecological aspects of use pesticides in Bielarus. 4th Forum HCH and unwanted pesticides 15–16 January 1996, Poznan Poland pp 81–83

  20. Jensen JK (1992): Unwanted pesticides — A disposal crisis in Africa. Pestic Outlook31, 30–33

    Google Scholar 

  21. Davis M (1999): Ethiopia’s toxic legacy. Pestic News43, 12–13

    Google Scholar 

  22. Food and Agricultural Organization (1998) Obsolete pesticides: problems prevention and disposal. Plant Production and Protection Division, FAO, Rome

    Google Scholar 

  23. Bidleman TF (1999): Atmospheric transport and air-surface exchange of pesticides. Water Air & Soil Pollution115, 115–166

    CAS  Google Scholar 

  24. Lichtenstein EP, Katan J, Anderegg BN (1977): Binding of ‘persistent’ and ‘nonpersistent’14C-labeled insecticides in an agricultural soil. J Agric Food Chem25, 43–47

    CAS  Google Scholar 

  25. Riley D (1976): Physical loss and redistribution of pesticides in the liquid phase. British Crop Protection Council Monograph No 17, 109–116

  26. Dijk HFG, van Guicherit R (1999): Atmospheric dispersion of current-use pesticides: A review of the evidence from monitoring studies. Water Air & Soil Pollution115, 21–70

    Google Scholar 

  27. Schindler D (1999): From acid rain to toxic snow. AMBIO28, 350–355

    Google Scholar 

  28. Richards RP, Kramer JW, Baker DB, Krieger KA (1987): Pesticides in rainwater in the northeastern United States. Nature327, 129–131

    Google Scholar 

  29. Pearce F, Mackenzie D (1999): It’s raining pesticides. New Seientist 3 April 1999, p 23

    Google Scholar 

  30. Dubus IG, Hollis JM, Briwn CD (2000): Pesticides in rainfall in Europe. Environ Pollution110, 331–344

    CAS  Google Scholar 

  31. Rice CP (1996): Pesticides in fogwater. Pestic Outlook April 1996, pp 31–36

  32. Tanabe S, Iwata H, Tatsukawa R (1994): Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci Total Environ154, 163–177

    CAS  Google Scholar 

  33. Carter A (2000): How pesticides get into water- and proposed reduction measures. Pestic Outlook August 2000, pp 149–156

  34. Mohapatra SP, Gajbhiye VT, Agnihotri NP, Raina M (1995): Insecticide pollution of Indian rivers. Environmentalist15, 41–44

    Google Scholar 

  35. Zhulidov AV, Headley JV, Pavlov DF, Robarts RD, Korotova LG, Vinnikov YY, Zhulidova OV (2000): Riverine fluxes of the persistent organochlorine pesticides hexachlorcyclohexane and DDT in the Russian Federation. Chemosphere41, 829–841

    CAS  Google Scholar 

  36. Iwata H, Tanabe S, Aramoto M, Sakai N, Tatsukawa R (1994): Persistent organochlorine residues in sediments from the Chukchi Sea Bering Sea and Gulf of Alaska Marine. Pollution Bulletin28, 746–753

    CAS  Google Scholar 

  37. Cardellicchio N (1995): Persistent contaminants in dolphins: an indication of chemical pollution in the Mediterranean Sea. Water Sci Technol32, 331–340

    CAS  Google Scholar 

  38. Krahn MM, Becker PR, Tilbury KL, Stein JE (1997): Organochlorine contaminants in blubber of four seal species: integrating biomonitoring and specimen banking. Chemosphere34, 2109–2121

    CAS  Google Scholar 

  39. Monirith I, Nakata H, Tanabe S, Tana TS (1999): Persistent organochlorine residues in marine and freshwater fish in Cambodia. Marine Pollution Bulletin38, 604–612

    CAS  Google Scholar 

  40. Falandysz J, Kannan K, Tanabe S, Tatsukawa R (1994): Organochlorine pesticides and polychlorinated biphenyls in cod-liver oils: North Atlantic Norwegian Sea North Sea and Baltic Sea. AMBIO23, 288–293

    Google Scholar 

  41. Kannan K, Tanabe S, Tatsukawa R (1995): Geographical distribution and accumulation features of organochlorine residues in fish in tropical Asia and Oceania. Environ Sci Technol29, 2673–2683

    CAS  Google Scholar 

  42. Prudente M, Tanabe S, Watanbe M, Subramanian A, Miyazki N, Suarez P, Tatsukawa R (1997): Organochlorine contamination in some Odontoceti species from the North Pacific and Indian Ocean Marine Environmental Research44, 415–427

    CAS  Google Scholar 

  43. Ballschmiter KH, Froescheis O, Jarman WM, Caillet G (1997): Contamination of the deep-sea. Marine Pollution Bulletin34, 288–289

    Google Scholar 

  44. JongSu L, Tanabe S, Takemoto N, Kubodera T (1997): Organochlorine residues in deep-sea organisms from Suruga Bay Japan. Marine Pollution Bulletin34, 250–258

    Google Scholar 

  45. Looser R, Froescheis O, Cailliet GM, Jarman WM, Ballschmiter K (2000): The deep-sea as a final global sink of semivolatile persistent organic pollutants? Part II: organochlorine pesticides in surface and deep-sea dwelling fish of the North and South Atlantic and the Monterey Bay Canyon (California). Chemosphere40, 661–670

    CAS  Google Scholar 

  46. Readman JW, Albanis TA, Barcelo D, Galassi S, Tronczynski J, Gabrielides GP (1997): Fungicide contamination of Mediterranean estuarine waters: results from a MED POL pilot survey. Marine Pollution Bulletin34, 259–263

    CAS  Google Scholar 

  47. Bromilow RH, Evans AA, Nicholls PH (1999): Factors affecting degradation rates of five triazole fungicides in two soil types: 1 Laboratory incubations. Pestic Sci55, 1129–1134

    CAS  Google Scholar 

  48. Somasundaram L, Coats JR (Eds) (1991): Pesticide Transformation Products: Fate and Significance in the Environment. ACS Symposium Series459, Am Chem Soc Washington DC

    Google Scholar 

  49. Heberer T, Dunnbier U (1999): DDT metabolite bis(chlorophenyl)acetic acid: the neglected environmental contaminant. Environ Sci Technol33, 2346–2351

    CAS  Google Scholar 

  50. D’browski J, Krause A, Filary Z, Majchrzak J (1992): Water pollution with pesticides. Seientific Session of Plant Protection Institute Poznan 1992

    Google Scholar 

  51. Kawano M, Brudnowska B, Falandysz J, Wakimoto T (2000): [Polychlorinated biphenyls and organochlorine pesticides in soils in Poland]. Rocz Panstw Zakl Hig51, 15–28 [in Polish]

    CAS  Google Scholar 

  52. Stobiecki S, Silowiecki A, Giza I (1997): Securing of pesticide waste created as a result of flood in pesticide stores — July 1997. Progress in Plant Protection38, 288–291 [in Polish]

    Google Scholar 

  53. Pruszynski S, Stobiecki S, Silowiecki A (1997): Niedzwiady — The first action aiming to stop the emission of toxic substances from the tomb. Progress in Plant Protection37, 72–75 [in Polish]

    Google Scholar 

  54. Zaleska A, Hupka J (1999): Problem of disposal of unwanted pesticides deposited in concrete tombs. Waste Management & Research17, 220–226

    CAS  Google Scholar 

  55. Czaplicki E, PodgÛrska B, RogaliÒska, M (1996): Chlorinated hydrocarbons content in tombs in Poland 4th Forum HCH and unwanted pesticides 15–16 January 1996. Poznan Poland, pp 63–73

  56. Stobiecki S, Sliwinski W (1998): Computer database of unwanted pesticides. Progress in Plant Protection38, 135–139 [in Polish]

    Google Scholar 

  57. Lu MC, Chen JN, Chang CP (1999): Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. J Hazard Mater65, 277–88

    CAS  Google Scholar 

  58. Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E (2000): Pesticide chemical oxidation: State-of-the-art. Water Research (Oxford)34, 366–377

    CAS  Google Scholar 

  59. Johnston PA, Stringer RL (1992): Unwanted pesticides — Options for disposal. Pestic Outlook31, 33–37

    Google Scholar 

  60. Troxler WL, Goh SK, Dicks LWR (1993): Treatment of pesticide-contaminated soils with thermal desorption technologies. Air & Waste43, 1610–1619

    CAS  Google Scholar 

  61. Gopal M, Mukherjee I, Prasad D, Yaduraju NT (2000): Soil solarization: Technique for decontamination of an organophosphorus pesticide from soil and nematode control. Bull Environ Contamin Toxicol64, 40–46

    CAS  Google Scholar 

  62. FAO (Food and Agriculture Organization) (1996): FAO Pesticide Disposal Series No 4 Rome Italy

  63. Hourdakis A, Anagnostopoulos H, Doulia D (2000): Soil contamination from buried pesticides. Bull Environ Contam Toxicol64, 47–50

    CAS  Google Scholar 

  64. Haggblom MM (1992): Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev9, 29–71

    CAS  Google Scholar 

  65. Gordon M, Choe N, Duffy J, Ekuan G, Heilman P, Muiznieks I, Ruszaj M, Shurtleff BB, Strand S, Wilmoth J, Newman LA (1998): Phytoremediation of trichloroethylene with hybrid poplars. Environ Health Perspect106, 1001–1004

    CAS  Google Scholar 

  66. Salt DE, Smith RD, Raskin I (1998): Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol49, 643–668

    CAS  Google Scholar 

  67. Macek T, Mackova M, Kas J (2000): Exploitation of plants for the removal of organics in environmental remediation. Biotech Adv18, 23–34

    CAS  Google Scholar 

  68. LeJeune KE, Wild JR, Russell AJ (1998): Nerve agents degraded by enzymatic foams. Nature395, 27–28

    CAS  Google Scholar 

  69. Moffat AS (1995): Plants proving their worth in toxic metal cleanup. Seience269, 302–303

    CAS  Google Scholar 

  70. Brooks RR (Ed) (1998): Plants that hyperaccumulate heavy metals: Their role in phytoremediation microbiology archaeology mineral exploration and phytomining. CAB International Wallingford UK 1998, 380 pp

    Google Scholar 

  71. Raskin I, Ensley BD (2000): Phytoremediation of Toxic Metals. John Wiley and Sons New York USA, 304 pp

    Google Scholar 

  72. Schnoor JL, Licht LA, McCtcheon SC, Wolfe NL, Carreira LH (1995): Phytoremediation of organic and nutrient contaminants. Environ Sci Technol29, 318–323

    Google Scholar 

  73. Simonich SL, Hites RA (1995): Organic pollutant accumulation in vegetation. Environ Sci Technol29, 2905–2914

    CAS  Google Scholar 

  74. Newman L, Strand S, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997): Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol31, 1062–1067

    CAS  Google Scholar 

  75. Bromilow RH Chamberlain K (1995): Principles governing uptake and chemicals in Plant Contamination: Modelling and Simulation of Organic Chemical Processes. Trapp S, McFarlane JC (Eds), Lewis Publishers, pp 37–68

  76. Briggs GG, Bromilow RH, Evans AA (1982): Relationship between lipophilicity and root uptake and translocation of nonionized chemicals by barley. Pestic Sci13, 495–504

    CAS  Google Scholar 

  77. Ryan JA, Bell RM, Davidson JM, O’Conner GA (1988): Plant uptake of non-ionic chemicals from soil. Chemosphere17, 2299–2423

    CAS  Google Scholar 

  78. Sicbaldi F, Sacchi GA, Trevisan M, Del-Re AAM (1997): Root uptake and xylem translocation of pesticides from different chemical classes. Pestic Sci50, 111–119

    CAS  Google Scholar 

  79. American Chemical Society (1994): Bioremediation through rhizosphere technology American Chemical Society Washington USA, 249 pp

    Google Scholar 

  80. Westcott ND (1985): Gamma-HCH in rape seedlings grown from treated seeds. Pestic Sci16, 416–421

    CAS  Google Scholar 

  81. Heinrich K, Schulz E (1996): Uptake of selected organochlorine pesticides from a sandy soil (deep loam grey soil) by maize in a pot experiment. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft79, 283–286 [in German]

    Google Scholar 

  82. Schroll R, Bierling B, Cao G, Dorfler U, Lahaniati M (1994): Uptake pathways of organic chemical from soil by agricultural plants. Chemosphere28, 297–303

    CAS  Google Scholar 

  83. Tykva R, Cudlin P, Toiska J (1998): Hexachlorobenzene uptake by roots and needles of Norway spruce in Organic Xenbiotics and Plants: Impact Metabolism and Toxicology. Proc of the 4th IMTOX-Workshop held in Vienna September 25–26 November 1997. Weiss P, Schroeder P, Rether B, Keth G, Collins C, Bach Th (Eds) Federal Environment Agency Austria, pp 38–41

  84. Ruegg EF, Lord KA, Mesquita TB (1977): Uptake and movement of14C-lindane in coffee plants. Arquivos do Instituto Biologico44, 235–246

    CAS  Google Scholar 

  85. Akram M, Ahmed S, Forgash AJ (1978): Metabolism of phosphorothioic acid OO-dimethyl-O-(S-ethoxy-2-ethyl-4-pyrimidinyl) ester (Etrimfos) in bean and corn plants. J Agric Food Chem26, 925–931

    CAS  Google Scholar 

  86. Nash RG, Beall ML Jr (1970): Chlorinated hydrocarbon insecticides: root uptake versus vapor contamination of soybean foliage. Seience168, 1109–1111

    CAS  Google Scholar 

  87. Bacci E, Gaggi C (1986): Chlorinated pesticides and plant foliage: translocation experiments. Bull Environ Contam Toxicol37, 850–857

    CAS  Google Scholar 

  88. Kiflom WG, Wandiga SO, Ng’ang’a PK, Kamau GN (1999): Variation of plant pp’-DDT uptake with age and soil type and dependence of dissipation on temperature. Environ Int25, 479–487

    CAS  Google Scholar 

  89. White JC (2000): Phytoremediation of weathered pp’-DDE residues in soil. Int J Phytorem2, 133–144

    CAS  Google Scholar 

  90. Singh G, Dowman A, Higginson FR, Fenton IG (1992): Translocation of aged cyclodiene insecticide residues from soil into forage crops and pastures at various growth stages under field conditions. J Environ Sci Health27, 711–728

    CAS  Google Scholar 

  91. Voerman S, Besemer AFH (1975): Persistence of dieldrin lindane and DDT in a light sandy soil and their uptake by grass. Bull Environ Contam Toxicol13, 501–505

    CAS  Google Scholar 

  92. Talekar NS, Chen JS, Lee EM, Lee TM (1985): Absorption of certain insecticide residues from contaminated soil by sweet potato roots. Plant Prot Bull (China)27, 423–432

    CAS  Google Scholar 

  93. Martina MJI, Iannucci-Berger W, Dykas L (2000): Chlordane uptake and its translocation in food crops. J Agric Food Chem48, 1909–1915

    Google Scholar 

  94. Getenga ZM, Jondiko JIO, Wandiga SO, Beck E (2000): Dissipation behavior of malathion and dimethoate residues from the soil and their uptake by garden pea (Pisum sativum). Bull Environ Contam Toxicol64, 359–367

    CAS  Google Scholar 

  95. Walsh GE, Hollister TA, Forester J (1974): Translocation of four organochlorine compounds by red mangrove (Rhizophora mangle L) seedlings. Bull Environ Contam Toxicol22, 129–135

    Google Scholar 

  96. Hinman ML, Klaine SJ (1992): Uptake and translocation of selected organic pesticides by the rooted aquatic plantHydrilla verticillata Royle. Environ Sci Technol26, 609–613

    CAS  Google Scholar 

  97. Kirkwood RC (1999): Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic Sci55, 69–77

    CAS  Google Scholar 

  98. Sundaram KMS, Yule WN, Prasad R (1975): Studies of foliar penetration movement and persistence of C14-labelled Fenitrothion in Spruce and Fir trees. Information Report Chemical Control Research Institute Canada No CC-X

  99. Wenzel KD, Mothes B, Weissflog L, Schuurmann G (1994): Bioavailability of airborne organochlorine xenobiotics to conifers. Fresenius Environ Bull3, 734–739

    CAS  Google Scholar 

  100. Scott JG (1996): Cytochrome P450 monooxygenase-mediated resistance to insecticides. J Pestic Sci21, 241–245

    CAS  Google Scholar 

  101. Lamoureux GL, Frear DS (1979): Pesticide metabolism in higher plants: Invitro Enzyme Studies: In Xenobiotic Metabolism-invitro methods. Paulson GD, Frear DS, Marks EP (Eds), ACS Symposium Series97, Am Chem Soc Washington DC, pp 77–128

    Google Scholar 

  102. Smyser BP, Hodgson E (1985) Metabolism of phosphorus-containing compounds by pig liver microsomal FAD-containing monooxygenase. Biochem Pharmacol34, 1145–1150

    CAS  Google Scholar 

  103. Tynes RE, Hodgson E (1985): Catalytic activity and substrate specificity of the flavin-containing monooxygenase in microsomal systems: characterization of the hepatic pulmonary and renal enzymes of the mouse rabbit and rat. Arch Biochem Biophys240, 77–93

    CAS  Google Scholar 

  104. Kulkarni AP, Hodgson E (1984): The metabolism of insecticides: The role of monooxygenase enzymes. Ann Rev Pharmacol Toxicol24,: 19–42

    CAS  Google Scholar 

  105. Hodgson E, Rose RL, Goh DKS, Rock GC, Roe RM (1993): Insect cytochrome P450: metabolism and resistance to insecticides. Biochem Soc Trans21, 1060–1065

    CAS  Google Scholar 

  106. Werck-Reichhart D, Hehn A, Didierjean L (2000): Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci5, 116–123

    CAS  Google Scholar 

  107. Mehendale HM, Skrentny RF, Dorough HW (1972): Oxidative metabolism of aldrin by subcellular root fractions of several plants species. J Agric Food Chem20, 398–402

    CAS  Google Scholar 

  108. Earl JW, Kenndy IR (1973): Aldrin epoxidase from pea roots. Phytochem14, 1507–1513

    Google Scholar 

  109. Dennis S, Kennedy IR (1986) Monooxygenases from soybean root nodules: Aldrin epoxidase and cinnamic acid 4-hydroxylase. Pestic Biochem Physiol26, 29–35

    CAS  Google Scholar 

  110. Swanson CR, Swanson HR (1968): Inhibition of monuron in cotton leaf tissue by carbamate insecticides. Weed Sci16, 481–484

    CAS  Google Scholar 

  111. Chang FY, Smith LW, Stephenson GR (1971): Insecticide inhibition of herbicide metabolism in leaf tissue. J Agr Food Chem19, 1183–1186

    CAS  Google Scholar 

  112. Kreuz K, Fonne-Pfister R (1992): Herbicide-insecticide interaction in maize: malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pestic Biochem Physiol43, 232–240

    CAS  Google Scholar 

  113. Diehl KE, Stoller EW, Barrett M (1995): In vivo and in vitro inhibition of nicosulfuron metabolism by terbufos metabolites in maize. Pestic Biochem Physiol51, 137–149

    CAS  Google Scholar 

  114. Baerg JR, Barrett M, Polge ND (1996): Insecticide and insecticide metabolite interactions with cytochrome P450 mediated activities in maize. Pestic Biochem Physiol55, 10–20

    CAS  Google Scholar 

  115. Neal RA (1980): Microsomal enzymes and the toxicity of thionosulfur compound in Microsomes and Drug Oxidations and Chemical Carcinogenesisî (Coon M J et al. Eds) vol2, Academic Press New York, pp 791–799

    Google Scholar 

  116. Moreland DE, Corbin FT, McFarland JE (1993): Oxidation of multiple substrates by corn shoot microsomes, Pestic Biochem Physiol47, 206–214

    CAS  Google Scholar 

  117. Moreland DE, Corbin FT, Fleischmann TJ, McFarland JE (1995): Partial characterization of microsomes isolated from mung bean cotyledons. Pestic Biochem Physiol52, 98–108

    CAS  Google Scholar 

  118. Stiborova M, Schmeiser HH, Frei E (2000): Oxidation of xenobiotics by plant microsomes a reconstituted cytochrome P450 system and peroxidase: A comparative study. Phytochem54, 353–362

    CAS  Google Scholar 

  119. Lee I, Fletcher JS (1992): Involvement of mixed function oxidase systems in polychlorinated biphenyl metabolism by plant cells. Plant Cell Reports11, 97–100

    CAS  Google Scholar 

  120. Hodgson E, Rose RL, Ryu DY, Falls BL, Levi PE (1995): Pesticide-metabolizing enzymes. Toxicol Lett82/83, 73–81

    CAS  Google Scholar 

  121. Feyereisen R (1995): Molecular biology of insecticide resistance. Toxicol Lett82/83, 83–90

    CAS  Google Scholar 

  122. Yu SJ, Kiigemagi U, Terriere LC (1971): Oxidative metabolism of aldrin and isodrin by bean root fractions. J Agric Food Chem19, 5–9

    CAS  Google Scholar 

  123. Pree DJ, Saunders JL (1974): Metabolism of carbofuran in mugho pine. J Agric Food Chem22, 620–625

    CAS  Google Scholar 

  124. Marshall TC, Dorough HW (1977): Bioavailability in rats of bound and conjugated plant carbamate insecticide residues. J Agric Food Chem25, 1003–1009

    CAS  Google Scholar 

  125. Kuhr RJ, Casida JE (1967): Persistent glycosides of metabolites of methylcarbamate insecticide chemicals formed by hydroxylation in bean plants. J Agric Food Chem15, 813

    Google Scholar 

  126. Still GG, Mansager ER (1973): Soybean shoot metabolism of isopropyl 3-chlorocarbanilate: ortho and para aryl hydroxylation. Pestic Biochem Physiol3, 87–95

    CAS  Google Scholar 

  127. Bull DL (1972): Metabolism of organophosphorus insecticides in animals and plants. Res Rev 431–422

  128. Bull DL, Whitten CJ, Ivie GW (1976): Fate of O-ethyl O-(4-methylthio)-phenyl-S-propyl phosphorodithioate (BAY NTN 9306) in cotton plants and soil. J Agric Food Chem24, 601–605

    CAS  Google Scholar 

  129. Eto M (1974): Organophosphorous Pesticides: Organic and Biological Chemistry. CRC Press Cleveland USA

    Google Scholar 

  130. Shimabukuro RH, Lamoureux GL, Frear DS (1982): Pesticide metabolism in plants. In: Bioremediation of Pesticides. Matsumura F, Krishna-Murti CR (Eds) Plenum Press New York USA, pp 21–66

    Google Scholar 

  131. McBain JB, Hoffman LJ, Menn JJ (1970): Metabolic degradation of O-ethyl S-phenyl ethylphosphonodithioate (Dyfonate) in potato plants. J Agric Food Chem18, 1139–1144

    CAS  Google Scholar 

  132. Rowlands DG (1966): The in vitro and in vivo metabolism of dimethoate by stored wheat and sorghum grains. J Sci Food Agric17, 90–93

    CAS  Google Scholar 

  133. Rowlands DG (1965): The in vitro and in vivo oxidation and hydrolysis of malathion by wheat grain esterases. J Sci Food Agric16, 325–330

    CAS  Google Scholar 

  134. Menzer RE, Casida JE (1965): Nature of toxic metabolites formed in mammals insects and plants from S-(dimethoxyphosphinyloxy)-NN-dimethyl cis-crotonamide and N-methyl analog. J Agric Food Chem13, 102–112

    CAS  Google Scholar 

  135. Bowes GW (1972): Uptake and metabolism of 22-bis(pchlorophenyl)-l11 trichloro ethane (DDT) by marine phytoplankton and its effect on growth and chloroplast electron transport. Plant Physiol49, 172

    Article  CAS  Google Scholar 

  136. Upshall DG, Goodwin TW (1964): Biochemical investigations into the susceptibility of barley varieties of DDT. J Sci Food Agric15, 846–855

    CAS  Google Scholar 

  137. Harrison RB, Holmes DC, Roburn J, Tatton JO (1967): The fate of some organochlorine pesticides on leaves. J Food Sci Agric18, 10–15

    CAS  Google Scholar 

  138. El Zorgani GA (1975): Residues of DDT in cotton seed after spraying with DDT and Torbidan. Pestic Sci6, 457–460

    Google Scholar 

  139. Nash RG, Beall ML Jr, Harris WG (1977): Toxaphene and 111-trichloro-22-bis(p-chlorophenyl)ethane (DDT) losses from cotton in an agroecosystem chamber. J Agric Food Chem25, 336–341

    CAS  Google Scholar 

  140. Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000): Phytodegradation of pp’-DDT and the enantiomers of op’-DDT. Environ Sci Technol34, 1663–1670

    CAS  Google Scholar 

  141. Wilce MCJ, Parker MW (1994): Structure and function of glutathione S-transferases. Biochim. Biophys. Acta1205, 1–18

    CAS  Google Scholar 

  142. Rennenberg H (1987): Aspects of glutathione function and metabolism in plants. In: Plant Molecular Biology. Von Wettstein D, Chua NH (Eds) Proceedings of a NATO Advanced Study Institute 10–19 June 1987, Carlsberg Lab Copenhagen Denmark Plenum Press New York, USA

    Google Scholar 

  143. Lamoureux GL, Rusness DG (1989): The role of glutathione and glutathione S-transferases in pesticide metabolism selectivity and mode of action in plants and insects. In: Dolphin D Poulson R Avramovic O (Eds) Glutathione: Chemical Biochemical and Medical Aspects Vol IIIB Ser: Enzyme and Cofactors J Wiley & Sons New York, pp 153–196

    Google Scholar 

  144. Shimabukuro RH, Frear DS, Swanson HR, Walsh WC (1971): Glutathione conjugation An enzymatic basis for atrazine resistance in corn. Plant Physiol47, 10–14

    CAS  Google Scholar 

  145. Schröder P (1997): Fate of glutathione S-conjugates in plants: Cleavage of the glutathione moiety. In: Hatzios KK (Ed) Regulation of enzymatic systems detoxifying xenobiotics in plants NATO ASI Series 37 Kluwer The Netherlands, pp 233–244

    Google Scholar 

  146. Pflugmacher, S Sandermann H, Schröder P (2000): Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochem54, 267–273

    CAS  Google Scholar 

  147. Cole D (1994): Detoxification and activation of agrochemicals in plants. Pestic Sci42, 209–222

    CAS  Google Scholar 

  148. Dixon DP, Cummins I, Cole DJ, Edwards R (1998): Glutathionemediated detoxification systems in plants. Curr Opinion Plant Biol1, 258–266

    CAS  Google Scholar 

  149. Schröder P, Lamoureux GL, Rusness DG, Rennenberg H (1990): Glutathione S-transferase activity in spruce needles. Pestic Biochem Physiol37, 211–218

    Google Scholar 

  150. Lamoureux GL, Rusness DG (1980):In vitro metabolism of pentachloronitrobenzene to pentachloromethylthiobenzene by onion: Characterization of glutathione S-transferase cysteine C-S lyase and S-adenosylmethionine methyl transferase activities. Pestic Biochem Physiol14, 50–61

    CAS  Google Scholar 

  151. Frear DS (1976): Pesticide conjugates-glycosides. In Bound and Conjugated Pesticide Residues, Kaufman DD, Still GG, Paulson GD, Bandai SK (Eds), A symposium sponsored by the Division of Pesticide Chemistry Colorado 1975 (ACS Symposium Series 29) Am Chem Soc Washington DC USA, pp 35–54

    Google Scholar 

  152. Sandermann H, Haas M, Meßner B, Pflugmacher S, Schröder P, Wetzel A (1997): The role of glucosyl and malonyl conjugation in herbicide selectivity. In: Hatzios KK (Ed) Regulation of enzymatic Systems detoxifying xenobiotics in plants. Kluwer Academic Publishers The Netherlands, pp 211–231

    Google Scholar 

  153. Coats JR (1991): Pesticide degradation mechanisms and environmental activation. In Pesticide Transformation Products: Fate and Significance in the Environment. ACS Symposium Series 459. Somasundaram L, Coats JR (Eds) (1991) Am Chem Soc Washington DC USA, pp 10–30

    Google Scholar 

  154. Ezra G, Stephenson GR (1985): Comparative metabolism of atrazine and EPTC in proso millet (Panicum miliaceum L) and corn. Pestic Biochem Physiol24, 207–212

    CAS  Google Scholar 

  155. Wetzel A, Sandermann H Jr (1994): Plant biochemistry of xenobiotics: isolation and characterization of a soybean Oglucosyltransferase of DDT metabolism. Arch Biochem Biophys314, 323–328

    CAS  Google Scholar 

  156. Pflugmacher S, Sandermann H Jr (1998): Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochem49, 507–511

    CAS  Google Scholar 

  157. Chaudhry MQ, MacNicoll AD (1998): Mechanisms of insecticide resistance. Pestic Outlook. August 1998, 23–28

  158. Roe RM, Hodgson E, Rose RL, Thompson DM, Devorshak C, Anspaugh DD, Linderman RJ, Harris SV, Tomalski MD (1998): Basic principles and rationale for the use of insect genes in bioremediation: Esterase phosphotriesterase cytochrome P450 and epoxide hydrolase. In: Pesticides and the Future: Minimizing Chronic Exposure of Humans and the Environment. Kuhr RJ, Motoyama N (Eds) IOS Press Amsterdam Netherlands, pp 169–178

    Google Scholar 

  159. Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE Gordon MP (2000): Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci (USA) 97, pp 6287–6291

    Google Scholar 

  160. Baum TJ, Hiatt A, Parrott WA, Pratt LH, Hussey RS (1996): Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Molecular Plant-Microbe Interactions9, 382–387

    CAS  Google Scholar 

  161. Baum TJ, Parrott WA, Hiatt A, Hussey RS (1995): Plantibodies: A potential approach to engineering nematode resistance. J Nematol27, 491

    Google Scholar 

  162. Tavladoraki P, Benvenuto E, Trinca S, Martinis D, de Cattaneo A, Galeffi P (1993): Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature (London)366, 469–472

    CAS  Google Scholar 

  163. Zimmermann S, Schillberg S, Liao YuCai, Fisher R (1998): Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance inNicotiana tabacum. Molecular Breeding4, 369–379

    CAS  Google Scholar 

  164. Longstaff M, Newell CA, Boonstra B, Strachan G, Learmonth D, Harris WJ, Porter AJ, Hamilton WDO (1998): Expression and characterisation of single-chain antibody fragments produced in transgenic plants against the organic herbicides atrazine and paraquat. Biochim et Biophys Acta1381, 147–160

    CAS  Google Scholar 

  165. Strachan G, Grant SD, Learmonth D, Longstaff M, Porter AJ, Harris WJ (1998): Binding characteristics of anti-atrazine monoclonal antibodies and their fragments synthesised in bacteria and plants. Biosensors & Bioelectronics13, 665–673

    CAS  Google Scholar 

  166. Anonymous (1997): ‘Plantibodies’ to root out herbicides. Chemistry & Industry1, September 1997, p 670

  167. Chaudhry MQ (2000): Standards and Immunogens. In: Immunoassays — A Practical Approach. Chapter 6, Gosling JP (Ed) Oxford University Press ISBN 0-19-963710-5, pp 165–185

  168. Karu AE, Scholthof KBG, Zhang GB, Christopher W (1994): Recombinant antibodies to small analytes and prospects for deriving them from synthetic combinatorial libraries. Food Agric Immunol6, 277–286

    CAS  Google Scholar 

  169. Banks JN, Chaudhry MQ, Matthews WA, Haverly M, Watkins T, Northway BJ (1998): Production and characterisation of polyclonal antibodies to the common moiety of some organophosphorus pesticides and the development of a generic type ELISA. Food Agric Immunol10, 349–361

    CAS  Google Scholar 

  170. Anonymous (1997): Poisoner turns over a new leaf New Scientist 30 August 1997, p 21

  171. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999): Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA96, 5973–5977

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Chaudhry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhry, Q., Schröder, P., Werck-Reichhart, D. et al. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ. Sci. & Pollut. Res 9, 4–17 (2002). https://doi.org/10.1007/BF02987313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987313

Keywords

Navigation