Skip to main content
Log in

Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980–1990] and for a projection into the future [2040–2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known ‘hotspots’ North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools.

Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980–1990 situation. Global background deposition of up to 5kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger W-H (1997): Biogeochemistry-Analysis of Global Change. Academic Press, San Diego, USA, 558 pp

    Google Scholar 

  2. Vitousek PM (1994): Beyond Global Warming: Ecology and Global Change. Ecology 75, 1861–1876

    Article  Google Scholar 

  3. Berner EK, Berner RA (1995) Global environment: water, air, and geochemical cycles. Prentice Hall, New York, USA, 376 pp

    Google Scholar 

  4. FAO - Food and Agriculture Organisation (1997): State of the Worlds Forests 1997. FAO, Rome, Italy

    Google Scholar 

  5. WMO - World Meteorlogical Organisation (1997): Global Atmosheric Watch: Global acid deposition assessment. Whelpdale DM, Kaiser MS (eds): WMO-TD No. 777, WMO, Geneva, Switzerland, 241 pp

    Google Scholar 

  6. Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998): Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management 101, 37–56

    Article  Google Scholar 

  7. Boxman AW, Blanck K, Brandrud TE, Emmett BA, Gundersen P, Hogervorst RF, Kjønaas OJ, Persson H, Timmermann V (1998): Vegetation and soil biota response to experimentallychanged nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management 101, 65–79

    Article  Google Scholar 

  8. Augustin S, Andreae H (eds) (1998): Cause-effect-interrealations in forest condition. State of current knowledge. Elaborated for the UN/ECE International Co-operative Programme Forests (ICP Forests) under the auspices of the Convention on Long-Range Transboundary Air Pollution. Federal Research centre for Forestry and Forest Products, Hamburg, Germany, 52 pp

    Google Scholar 

  9. Melillo JM (1996): Carbon and nitrogen interactions in the terrestrial biosphere: anthropogenic effects. In: Global Change and Terrestial ecosystems. Walker BH, Steffen WL (eds): Cambridge University Press, Cambridge, New York, UK, pp 432–450

    Google Scholar 

  10. Holland EA, Braswell BH, Lamarque JF, Townsend A, Sulzman J, Müller JF, Dentener F, Brasseur G, Levy II H, Penner JE, Roelolofs G (1997): Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research 102, 15849–15866

    Article  CAS  Google Scholar 

  11. Houghton RA, Davidson EA, Woodwell GM (1998): Missing sinks, feedbacks and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles 12, 25–34

    Article  CAS  Google Scholar 

  12. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999): Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148

    Article  CAS  Google Scholar 

  13. Kirschbaum MUF (1995): The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology and Biogeochemistry 27, 753–760

    Article  CAS  Google Scholar 

  14. Schimel D, Enting M, Heimann M, Wigley T, Raynaud D, Alves D, Siegenthaler U (1994): CO2and the carbon cycle. In: Climate Change 1994. Houghton JT, Meira Filho LG, Bruc J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds): Cambridge University Press, Cambridge, United Kingdom, pp 35–71

    Google Scholar 

  15. Scholes RJ, Schulze ED, Pitelka LF, Hall DO (1998): Biogeochemistry of terrestrial ecosystems. In: Walker B, Steffen W, Canadell J, Ingram J (eds): The Terrestrial Biosphere and Global Change. Cambridge University Press, Cambridge, New York, UK

    Google Scholar 

  16. IPCC - Intergovernmental Panel on Climate Change: Climate change (1998): The regional impacts of Climate Change. An assessment of vulnerability. Cambridge University Press, Cambridge, New York, UK, 517 pp

    Google Scholar 

  17. Mooney HA, Canadell J, Chapin FS, Ehleringer J, Körner C, McMurtrie R, Parton WJ, Pitelka L, Schulze ED (1998): Ecosystem Physiology Responses to Global Change. In: Walker B, Steffen W, Canadell J, Ingram J (eds): The Terrestrial Biosphere and Global Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  18. Walker B, Steffen W, Canadell J, Ingram J (eds) (1998): The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems-Executive Summary. In: The Terrestrial Biosphere and Global Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  19. Arnone III JA, Hirschel G (1997): Does Fertilizer Application Alter the Effect of Elevated CO2 onCarex leaf litter Quality and in Situ Decomposition in an Alpine Grassland? Acta Oecologica 18, 201–206

    Article  Google Scholar 

  20. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996): The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report Max-Planck-Institut für Meteorologie 218, MaxPlanck-Institut für Meteorologie, Hamburg, Germany 90pp

    Google Scholar 

  21. Zimmermann PH, Feichter J, Rath HK, Crutzen PJ, Weiss W (1989): A global three-dimensional source-receptor model investigation using85Kr. Atmospheric Environment 23, 25–35

    Article  CAS  Google Scholar 

  22. Roelofs GJ, Lelieveld J (1995): Distribution and budget of ozone in the troposphere calculated wih a chemistry-general circulation model. Journal of Geophysical Research 100, 20983–20998

    Article  CAS  Google Scholar 

  23. Feichter J, Kjellström E, Rodhe H, Dentener F, Lelieveld J, Roelofs GJ (1996): Simulation of the tropospheric sulfur cycle in a global climate model. Atmospheric Environment 30, 1693–1707

    Article  CAS  Google Scholar 

  24. Dentener FJ, Crutzen PJ (1994): A three-dimensional model of the global ammonia cycle, Journal of Atmospheric Chemistry 19, 331–369

    Article  CAS  Google Scholar 

  25. Bouwman AF, Lee DS, Asman WAH, Dentener FJ, van der Hoek KW, Olivier JGJ (1997): A global high-resolution emission inventory for ammonia, Global Biogeochemical Cycles 11, 561–587

    Article  CAS  Google Scholar 

  26. Roelofs GJ, Lelieveld J, van Dorland R (1997): A three-dimensional chemsitry/general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing, Journal of Geophysical Research 102, 23389–23401

    Article  CAS  Google Scholar 

  27. IPCC - Intergovernmental Panel on Climate Change 1992. Climate change 1992 — the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, UK, 200 pp

    Google Scholar 

  28. Veerhoff M, Roscher S, Brümmer G (1996): Ausmaß und ökologische Geahren der Versauerung von Böden unter Wald. Berichte des Umweltbundesamtes 96/1 Umweltbundesamt, Berlin, Germany, 364 pp

  29. FAO - Food and Agriculture Organisation 1995. The digital soil map of the world. Land & Water Development Division, FAO, Rome, Italy

    Google Scholar 

  30. WCMC - World Conservation Monitoring Centre 1997. Generalized World Forest Map. Internetsitehttp://www.wcmc.org.uk/forest/data/wfm.html. World Conservation Monitoring Centre, Cambridge, UK

    Google Scholar 

  31. Nilsson SJ, Grennfelt P (1988): Critical loads for sulfur and nitrogen. Miljorapport 1988, 15, Sweden, 418 pp

    Google Scholar 

  32. Ulrich B (1988) Ökochemische Kennwerte des Bodens. Zeitschrift Pflanzenernährung und Bodenkunde 151, 171–176

    Article  CAS  Google Scholar 

  33. Ulrich B: 1990. Chemischer Bodenzustand. Manuskript zur forstlichen Standortaufnahme. Unpublished, Göttingen, Germany, 137 pp

  34. Bouman OT (1991): Quantitative Aspekte der Waldenährung in Forststandorten mit Bodenversauerung und anthropogener Immissionsbelastung — dargestellt am Beispiel des Westharzes. Berichte Forschungszentrum Waldökosysteme, Reihe A, Bd.65, Göttingen, Germany, 171 pp

  35. Kimmins JP (1987): Forest ecology. Macmillan, New York, USA, 531 pp

    Google Scholar 

  36. Flaig H, Mohr H (1996): Der überlastete Stickstoffkreislauf: Strategien einer Korrektur. Nova Acta Leopoldina. Nummer 289. Band 70. Barth, Leipzig, Heidelberg, Germany, 168 pp

    Google Scholar 

  37. Bobbink R, Boxman D, Fremstad E, Heil E, Houdijk A, Roeloefs J (1992): Critical loads for nitrogen eutrophication of terrestrial and wetland ecosystems based upon changes in vegetation and fauna. In: Grennfelt P, Thörnelof E (eds): Critical loads for nitrogen. 111–159, Nordic Council of Ministers, Copenhagen, Denmark

    Google Scholar 

  38. Bobbink R, Hornung M, Roelofs JGM (1996): Empirical nitrogen critical loads for natural and semi natural ecosystems. In: Manual on methodologies and criteria for mapping critical levels/loads and geographic areas where they are exceeded. UN-ECE Convention on Long-range Transboundary Air Pollution. Federal Environmental Agency (Umweltbundesamt), Berlin, Germany, pp 1–45

    Google Scholar 

  39. Olson JS, Watts JA, Allison LJ (1983): Carbon in live vegetation of major world ecosystems Carbon in Live Vegetation of Major World Ecosystems. Report ORNL-5862, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    Google Scholar 

  40. Deichmann U, Eklundh L (1991): Global digital data sets for land degradation studies: a GIS approach. GRID Case Study Series No. 4. UNEP/GEMS and GRID, Nairobi, Kenya, 103 pp

    Google Scholar 

  41. BMELF - Bundesministerium für Ernährung, Landwirtschaft und Forsten 1997. Deutscher Waldbodenbericht 1996. Band 1. BMELF, Bonn, Germany, 144 pp

    Google Scholar 

  42. UN-ECE, United Nations Economic Commission for Europe Convention On Long-Range Transboundary Air Polltuion 1996. Mapping critical levels/loads and geographical areas where they are exceeded. Umweltbundesamt Texte Nr. 71/96. Umweltbundesamt, Berlin, Germany, 142 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Busch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, G., Lammel, G., Beese, F.O. et al. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario. Environ Sci & Pollut Res 8, 95–102 (2001). https://doi.org/10.1007/BF02987301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987301

Keywords

Navigation