Advertisement

Chemotherapy and immunotherapy of colorectal cancer

  • Giuseppe Masucci
  • Peter Ragnhammar
  • Jan-Erik FrÖdin
  • Anna-Lena Hjelm
  • Peter WersÄll
  • Jan Fagerberg
  • Anders Österborg
  • HÅkan Mellstedt
Article
  • 38 Downloads

Abstract

More than 50% of the patients with large bowel cancer develop disseminated disease and invariably succumb. Adjuvant chemotherapy with 5-FU and levamisole have been shown to be more efficient than 5-FU alone or in combination with cytostatics. The combination of 5-FU, leukovorin and methotrexate induces prolonged survival with a good quality of life in metastatic colorectal cancer (CRC). During the last decade tumor immunotherapy has been an alternative facilitated by isolation and large scale production of cytokines and monoclonal antibodies. The mouse monoclonal antibody (MAb) 17-1A recognizes a tumor-associated antigen (TAA), present in high concentrations on the surface of gastrointestinal tumor cells. Injections of MAb 17-1A in patients with metastatic CRC induced generation of anti-idiotypic (ab2) in 90% and anti-anti-idiotypic (ab3) antibodies in 47% of the treated patients. The development of ab3 correlated significantly with survival (mean 80 weeks) while ab3 - patients survive only 38 weeks. One of 52 patients treated with MAb 17-1A is a complete remission after 66 months, 3 had minor regression and 6 had a stable disease (19% RR). Based onin vitro findings showing increased antibody-dependent cellular cytotoxicity (ADCC) by the combination of granulocyte-macrophage colony stimulating factor (GM-CSF) and MAb 17-1A, 16 CRC patients have been treated with subcutaneously injections of GM-CSF for 10 days and intravenous infusions of MAb 17-1A at day 3. Two of 16 are in CR, 1 in MR and 3 in SD (37.5% RR). Minor side-effects were registered. A further development of immunotherapy of CRC might imply vaccination by injection of specific human anti-idiotypic antibodies (ab2) which mimics the nominal antigen, in order to induce a specific immunity.

Key words

Colorectal carcinoma Therapy Biologicals Chemotherapeutics 

References

  1. 1.
    Buyse M, Zeleniuch-Jacquotte A, Chalmers T C: Adjuvant therapy of colorectal cancer: why we still do not know?JAMA 259, 3571 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    Heidelberg C: Fluorinated pyrimidines, a new class of tumor inhibitory compound.Nature 179, 663 (1957).CrossRefGoogle Scholar
  3. 3.
    Moertel C G: Progress and hope in the treatment of gastrointestinal cancer., in Fortner J G and Rhoads J E (eds):Accomplishments in Cancer Research., pp. 295–317. Philadelphia (1987).Google Scholar
  4. 4.
    Gastrointestinal Tumor Study Group: Adjuvant therapy of colon cancer — results of a prospectively randomized trial.N Engl J Med 312, 1465 (1985).Google Scholar
  5. 5.
    Mansour E, Ryan L, Lerner Het al.: Lack of effectiveness of 5-FU-methyl CCNU as compared to 5-FU for adjuvant therapy in colon cancer.Proc Am Soc Clin Oncol 8, 115 (1989).Google Scholar
  6. 6.
    Panettierre F J, Goodman P J, Constanzi J Jet al.: Adjuvant therapy in large bowel adenocarcinoma: long-term results of a Southwest Oncology Group study.J Clin Oncol 6, 947 (1988).Google Scholar
  7. 7.
    Higgins G A Jr, Amadeo J H, McElhinney Jet al.: Efficacy of prolonged intermittent therapy with combined 5-fluorouracil and methyl-CCNU following resection for carcinoma of the large bowel.Cancer 53, 1 (1984).CrossRefPubMedGoogle Scholar
  8. 8.
    Abdi E A, Harbora D, Hanson Jet al.: Adjuvant chemoimmuno- and immunotherapy in stage B2 and C colorectal cancer.Proc Am Soc Clin Oncol 6, 93 (1987).Google Scholar
  9. 9.
    Wolmark N, Fisher B, Rockette Het al.: Postoperative adjuvant chemotherapy or BCG for colon cancer: results from NSABP protocol C-01.J Natn Cancer Inst 80, 30 (1988).CrossRefGoogle Scholar
  10. 10.
    Taylor J, Machin D, Mulleet Met al.: A randomized controlled study of adjuvant portal vein cytotoxic perfusion in colorectal cancer.Br J Surg 72, 359 (1984).CrossRefGoogle Scholar
  11. 11.
    Verhaegen H, Decree J, De Cock Wet al.: Levami- sole therapy in patients with colorectal cancer, in Terry W D and Rosenberg S A (eds):Immunotherapy of Human Cancer, pp. 225–229. New York, Elsevier (1982).Google Scholar
  12. 12.
    Cirigos M A, Amery W K: Combined levamisole therapy: an overview of its protective effects, inImmunotherapy of Human Cancer, pp. 181–195. New York, Raven Press (1978).Google Scholar
  13. 13.
    Renoux G: The general immunopharmacology of levamisole.Drugs 20, 89 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    Laurie J A, Moertel C G, Fleming T R et al.: Surgical adjuvant therapy of large bowel carcinoma: an evaluation of levamisole and the combination of levamisole and 5-fluorouracil. A study of the North Central Cancer Treatment Group (NCCTG) and the Mayo Clinic.J Clin Oncol 7, 1447 (1989).PubMedGoogle Scholar
  15. 15.
    Moertel C G, Fleming T H, MacDonald J Set al.: Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma.N Engl J Med 322, 352 (1990).PubMedGoogle Scholar
  16. 16.
    Buyse M: Update of published international trials of adjuvant therapy in colorectal cancer. Abstract, EORTC Symp on Advances in Gastrointestinal Tract Cancer Research and Treatment, Strasbourg, p. 4, Nov. 15–17 (1989).Google Scholar
  17. 17.
    Mayer R J: Does adjuvant therapy work in colon cancer?N Engl J Med 322, 399 (1990).PubMedGoogle Scholar
  18. 18.
    The efficacy and the Group C status of levamisole plus 5-fluorouracil for patients with Dukes’ C colon cancer. National Cancer Institute (press release on Levamisole), Bethesda, Maryland 20892 (USA), September 26 (1989).Google Scholar
  19. 19.
    Petrelli N, Herrera L, Rustum Jet al.: A prospective radomized trial of 5-fluorouracil versus 5-fluorouracil and high dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma.J Clin Oncol 5, 1559 (1987).PubMedGoogle Scholar
  20. 20.
    Doroshaw J H, Bertrand M, Multhaufs Pet al.: Prospective randomized trial comparing 5-FU versus 5-FU and high doses folinic acid for treatment of advanced colorectal cancer.Proc Am Soc Clin Oncol 6, 96 (1987).Google Scholar
  21. 21.
    Erlichman C, Fine S, Wong Aet al.: A randomized trial of 5-fluorouracil and folinic acid in patients with metastatic colorectal carcinoma.J Clin Oncol 6, 469 (1988).PubMedGoogle Scholar
  22. 22.
    Petrelli N, Madejewicz S, Rustum Y, Herrera L, Creaven P, Plager J, Solomon J, Mittelman A: Combination chemotherapy of cisplatium and 5- fluorouracil for advanced colorectal adenocarcinoma.Cancer Chemother Pharmacol 23, 57 (1989).PubMedGoogle Scholar
  23. 23.
    Wolmark N, Fisher B, Rockette H, Redmond C, Wickerham D L, Fisher E R, Jones J, Glass A, Lerner H, Lawrence W, Prager D, Wexler M, Evans J, Cruz A, Dimitrov N, Jochimsen P: Postoperative adjuvant chemotherapy or BCG for colon cancer: results from NSABP Protocol C-01.J Natn Cancer Inst 80, 30 (1988).CrossRefGoogle Scholar
  24. 24.
    Robinson E, Haim N, Bartal A, Mohilever J, Mekori T: Adjuvant radiochemoimmunotherapy in colorectal cancer: results of a randomized study and review of the literature.Int J Immunother 1, 23 (1986).Google Scholar
  25. 25.
    Panettiere F J, Goodman P J, Costanzi J J, Cruz A B Jr, Vaitkevicius V K, McCracken J D, Brownlee R W, Laufman L, Stephens R L, Bonnet J, Bottomley R, Rivkin S, Fletcher W, Oishi N, Chen T T: Adjuvant therapy in large bowel adenocarcinoma: Long-term results of a Southwest oncology group study.J clin Oncol 6, 947 (1988).PubMedGoogle Scholar
  26. 26.
    Hoover H C Jr, Surdyke M, Dangel R B, Peters L C, Hanna M G Jr: Delayed cutaneous hypersensitivity to autologous tumor cells in colorectal cancer patients immunized with an autologous tumor cell: Bacillus Calmette-Guérin vaccine.Cancer Res 44, 1671 (1984).PubMedGoogle Scholar
  27. 27.
    Hoover H C, Surdyke M G, Brandhorst J S, Peters L C, Hanna M G: Five-year follow-up of a controlled trial of active specific immunotherapy in colorectal cancer. Abstract.Proc ASCO 9, 106 (1990).Google Scholar
  28. 28.
    Wunderlich M, Schiessel R, Rainer H, Rauhs R, Kovats E, Schemper M, Dittrich Ch, Micksche M, Sedlacek H H: Effect of adjuvant chemo- or immunotherapy on the prognosis of colorectal cancer operated for cure.Br J Surg (Suppl), S107 (1985).Google Scholar
  29. 29.
    Clark P I, Slevin M L, Reznek R H, Niederle N, Kurschel E, Lundell G, Cedermark B, Fallenius A, Blomgren H, Öhman U, Silferswärd C, Theve N O, Wrigley P F M: Two randomized phase II trials of intermittent intravenous versus subcutaneous alpha-2 interferon alone (Trial 1) and in combination with 5- fluorouracil (Trial 2) in advanced colorectal cancer.Int J Colored Dis 2, 26 (1987).CrossRefGoogle Scholar
  30. 30.
    Krown S E, Mintzer D, Cunningham-Rundles S, Niedzwiecki D, Krim M, Einzig A I, Gabrilove J L, Shurgot B, GessulaJ: High-dose human lymphoblastoid interferon in metastatic colorectal cancer: clinical results and modification of biological responses.Cancer Treat Rep 71, 39 (1987).PubMedGoogle Scholar
  31. 31.
    Lillis P K, Brown T D, Beougher K, Koeller J., Marcus S G, Von Hoff D D: Phase II trial of recombinant beta interferon in advanced colorectal cancer.Cancer Treat Rep 71, 965 (1987).PubMedGoogle Scholar
  32. 32.
    Eggermont A M, Weimar W, Tank B, Dekkers-Bijma A M, Marquet R L, Lameris J S, Westbroek D L, Jeekel J: Clinical and immunological evaluation of 20 patients with advanced colorectal cancer treated with high dose recombinant leukocyte interferon-αA (rIFNαA ).Cancer Immunol Immunother 21, 81 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    Wadler S, Schwartz E L, Goldman M, Lyver A, Rader M, Zimmerman M, Itri L, Weinberg V, Wiernik P H: Fluorouracil and recombinant alpha-2a- interferon: an active regimen against advanced colorectal carcinoma.J Clin Oncol 7, 1769 (1989).PubMedGoogle Scholar
  34. 34.
    Neville A M, Gusterson B A: Monoclonal antibodies and human tumors; pathological and clinical aspects.Eur J Cancer Clin Oncol 21, 355 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    Herlyn D, Herlyn M, Ross A H, Ernst C, Atkinson B, Koprowski H: Efficient selection of human tumor growth-inhibiting monoclonal antibodies.J Immunol Methods 73, 157 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    Douillard J Y, Lehur P A, Vignoud J, Blottiére H, Maurel C, Thedrez P, Kremer M, Le Mevel B: Monoclonal antibodies specific immunotherapy of gastrointestinal tumors.Hvbridoma 5 (Suppl. 1), 139 (1986).Google Scholar
  37. 37.
    Mellstedt H, Frödin J-E, Ragnhammar P, Masucci G, Shetye J, Christensson B, Biberfeld P, Makower J, Pihlstedt P, Cedermark B, Harmenberg U, Wahren B, Rieger Å, Magnusson I, Nathansson J, Erwald R: The clinical use of monoclonal antibodies, MAb 17- 1A, in the treatment of patients with metastatic colorectal carcinoma.Med Oncol Tumor Pharmacother 6, 99 (1989).PubMedGoogle Scholar
  38. 38.
    Mellstedt H, Frödin J-E, Masucci G: Clinical status of monoclonal antibodies in the treatment of colorectal carcinoma.Oncology 3, 25 (1989).PubMedGoogle Scholar
  39. 39.
    Verrill H, Goldberg M, Rosenbaum R, Abbott R, Simunovic L, Steplewski Z, Koprowski H: Clinical trial of Wistar Institute 17-1A monoclonal antibody in patients with advanced gastrointestinal adenocarci- noma. A preliminary report.Hybridoma 5 (Suppl. 1), 175 (1986).Google Scholar
  40. 40.
    Sears H F, Herlyn D, Steplewski Z, Koprowski H: Initial trial use of murine monoclonal antibodies as immunotherapeutic agents for gastrointestinal adeno- carcinoma.Hvbridoma 5, 109 (1986).Google Scholar
  41. 41.
    Magnani J L, Nilsson B, Brockhaus M,et al.: A monoclonal antibody defined antigen associated with gastro-intestinal cancer is a ganglioside containing sia- lylated lac tp-N-fu-copentaose II.J Biol Chem 257, 365 (1982).Google Scholar
  42. 42.
    Ross A H, Herlyn D, Iliopoulos D,et al.: Isolation and characterization of a carcinoma-associated antigen.Biochem Biophys Res Commun 135, 297 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    Blaszczyk-Thurin M, Thurin J, Hindsgaul O,et al.: Y and blood group B type 2 glycolipid antigens accumulate in a human gastric carcinoma cell line as detected by monoclonal antibody: isolation and characterization by mass spectrometry and NMR spectro- scopy.J Biol Chem 262, 372 (1987).PubMedGoogle Scholar
  44. 44.
    Gold P, Freedom S O: Specific carcinoembryonic antigens of the human digestive system.J Exp Med 122 467 (1965).PubMedCrossRefGoogle Scholar
  45. 45.
    Lindholm L, Holmgren J, Svennerholm L,et al.: Monoclonal antibodies against gastrointestinal tumor-associated antigens isolated as monosialogangliosides.Int Archs All Appl Immunol 71, 178 (1983).Google Scholar
  46. 46.
    Adams D O, Hall T, Steplewski Z,et al: Tumors undergoing rejection induced by monoclonal antibodies of the IgG2A isotype containing increased numbers of macrophages activated for distinctive form of antibody dependent cytolysis.Proc Natn Acad Sci 81, 3506 (1984).CrossRefGoogle Scholar
  47. 47.
    Shetye J, Frödin J-E, Christensson B,et al.: Immuno- histochemical monitoring of metastatic colorectal carcinoma in patients treated with monoclonal antibodies (MAb 17-1A).Cancer Immunol Immunother 27, 154 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    Masucci G, Lindemalm C, Frödin J-E,et al.: Effect of human blood rnononuclear cell populations in antibody dependent cellular cytotoxicity (ADCC) using two murine (CO17-1A and Br55-2) and one chimeric (17-1A) monoclonal antibodies against a human colorectal carcinoma cell line (SW948).Hvbridoma 7, 429 (1988).Google Scholar
  49. 49.
    Frödin J-E, Lefvert A-K, Mellstedt H: Pharmacoki- netics of the mouse monoclonal antibody 17-1A in cancer patients receiving various treatment schedules.Cancer Res 50, 4866 (1990).PubMedGoogle Scholar
  50. 50.
    Duvall E, Wyllie A H: Death and the cell.Immunol Today 7, 115 (1986).CrossRefGoogle Scholar
  51. 51.
    Wyllie A H, Kerr J F R, Currie A R: Cell death: the significance of apoptosis.Int Rev Cytol 68, 251 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    Trauth B C, Klas C, Peters A M J,et al.: Monoclonal antibody mediated tumor regression by induction of apoptosis.Science 245, 301 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    Anasetti C, Martin P J, Morishita Y,et al.: Human large granular lymphocytes express high affinity receptors for murine monoclonal antibodies of the IgG3 subclass.J Immunol 138, 2979 (1987).PubMedGoogle Scholar
  54. 54.
    Ortaldo J R, Woodhouse C, Morgan A C,et al.: Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies.J Immunol 138, 3566 (1987).PubMedGoogle Scholar
  55. 55.
    Steplewski Z, Sun L K, Shearman C W,et al.: Biological activity of human-mouse IgG1 IgG2, IgG3 and IgG4 chimeric monoclonal antibodies with anti- tumor specificity.Proc Natn Acad Sci USA 85, 4852 (1988).CrossRefGoogle Scholar
  56. 56.
    Fogler W E, Sun L K, Klinger M R,et al.: Biological characterization of a chimeric mouse-human IgM antibody directed against the 17-1A antigen.Cancer Immunol Immunother 30, 43 (1989).PubMedCrossRefGoogle Scholar
  57. 57.
    Brown S L, Miller R A, Horning S J,et al.: Treatment of B cell lymphomas with anti-idiotype antibodies alone and combination with α-IFN.Blood 73, 651 (1989).PubMedGoogle Scholar
  58. 58.
    Hale G, Clark M R, Marcus R,et al.: Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibodies to Campath-1H.Lancet ii, 1394 (1988).CrossRefGoogle Scholar
  59. 59.
    Janson C H, Tehrani M J, Mellstedt H,et al.: Anti- idiotypic monoclonal antibody to a T-cell chronic lymphatic leukemia. Characterization of the antibody,in vitro effector functions and results of therapy.Cancer Immunol Immunother 28, 225 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    Mellstedt H, Frödin J-E, Ragnhammar P, et al.: Therapy of colorectal carcinoma with monoclonal antibodies (MAbl7-lA) alone and in combination with granulocyte monocyte-colony-stimulating factor (GM-CSF). Acta Oncologica (1991) (In press).Google Scholar
  61. 61.
    Koprowski H, Herlyn D, Lubeck M,et al. Human anti-idiotype antibodies in cancer patients: is the modulation of the immune response beneficial for the patient?Proc Natn Acad Sci 81, 206 (1984).CrossRefGoogle Scholar
  62. 62.
    Jerne N K: Towards a network theory of the immune system.Ann Immunol 124, 373 (1974).Google Scholar
  63. 63.
    Frödin J-E, Harmenberg U, Biberfeld P,et al.: Clinical effects of monoclonal antibodies (MAb 17-1A) in patients with metastatic colorectal carcinomas.Hybridoma 7, 309 (1988).PubMedGoogle Scholar
  64. 64.
    Kedar E, Klein E: Cancer immunotherapy: Why are clinical results discouraging — can they be improved? Adv Cancer Res (1991) (In press).Google Scholar
  65. 65.
    Parhar R S, Lala P K: Changes in the host natural killer cell population in mice during tumor development. 2. The mechanism of suppression of NK activity.Cell Immunol 93, 265 (1985).PubMedCrossRefGoogle Scholar
  66. 66.
    Berd D, Maguire H C Jr., Mastrangelo M J: Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide.Cancer Res 46, 2572 (1986).PubMedGoogle Scholar
  67. 67.
    Douillard J Y, Lehur O A, Vignoud J,et al.: Monoclonal antibodies specific immunotherapy of gastrointestinal tumors.Hybridoma 5, 139 (1986).Google Scholar
  68. 68.
    Markoe A M, Brady L W, Amendola B E,et al.: Treatment of gastrointestinal cancer using monoclonal antibodies, in Vaeth J M, Meyer J L (eds):Frontiers of Radiation Therapy and Oncology. The Present and Future Role of Monoclonal Antibodies in Management of Cancer, p. 214. Basel, Kager 24 (1990).Google Scholar
  69. 69.
    Fogler W E, Klinger M R, Abraham K G,et al.: Enhanced cytotoxicity against colon carcinoma by combinations of noncompeting monoclonal antibodies to the 17-1A anderen.Cancer Res 48, 6303 (1988).PubMedGoogle Scholar
  70. 70.
    Masucci G, Wersäll P, Ragnhammar P,et al.: Granulocyte-monocyte-colony-stimulating factor augments the cytotoxic capacity of lymphocytes and monocytes in antibody dependent cellular cytotoxicity.Cancer Immunol Immunother 29, 288 (1989).PubMedCrossRefGoogle Scholar
  71. 71.
    Masucci G, Wersäll P, Nielsen J,et al.: Lymphokine activated killer (LAK) cells in antibody dependent cellular cytotoxicity (ADCC) using MAbl7-lA: a combination of potential usefulness in tumor therapy.Hybridoma 8, 507 (1989).PubMedCrossRefGoogle Scholar
  72. 72.
    Wersäll P, Masucci G, Nielsen J,et al.: TNF-α and leukocyte α-IFN enhance IL-2 activated killer cell activity against tumor cells in the absence or presence of monoclonal antibodies.The Cancer Journal 3, 147 (1990).Google Scholar
  73. 73.
    Masucci G, Ragnhammar P, Wersäll P,et al.: Granulocyte-monocyte colony-stimulating-factor augments the interleukin-2 induced cytotoxic activity of human lymphocytes in the absence and presence of mouse or chimeric monoclonal antibodies (MAb 17- 1A).Cancer Immunol Immunother 31, 231 (1990).PubMedCrossRefGoogle Scholar
  74. 74.
    Wersäll P, Masucci G, Mellstedt H: Interleukin-4 (IL- 4) augments the cytotoxic capacity of lymphocytes and monocytes in antibody dependent cellular cytotoxicity.Cancer Immunol Immunother 33, 45 (1991).PubMedCrossRefGoogle Scholar
  75. 75.
    Weiner L M, Steplewski Z, Koprowski H,et al.: Biologic effects of gamma interferon pre-treatment followed by monoclonal antibody 17-1A administration in patients with gastrointestinal carcinoma.Hybridoma 5, 65 (1986).Google Scholar
  76. 76.
    Weiner L M, Moldofsky P J, Gatenby R A,et al.: Antibody delivery and effector cell activation in a phase II trial of recombinant γ-interferon and the murine monoclonal antibody CO17-1A in advanced colorectal carcinoma.Cancer Res 48, 2568 (1988).PubMedGoogle Scholar
  77. 77.
    Santoli D, Clark S C, Kreider B L,et al.: Amplification of IL-2-driven T cell proliferation by recombinant human IL-3 and granulocyte-macrophage colony-stimulating factor.J Immunol 141, 519 (1988).PubMedGoogle Scholar
  78. 78.
    Hutchinson G H, Heinemann D, Ranson D L,et al.: Prognostic value ofin vitro tests of lymphocyte reactivity in colorectal carcinoma.J Exp Clin Cancer Res 2, 161 (1983).Google Scholar
  79. 79.
    Umpleby H C, Heineman D, Symes M O,et al.: Expression of histocompatibility antigens and characterization of mononuclear cell infiltrates in normal and neoplastic colorectal tissue of humans.JNCI 74, 1161 (1985).PubMedGoogle Scholar
  80. 80.
    Frödin J-E, Faxas M-E, Hagström B, et al.: Induction of anti-idiotypic (ab2) and anti-anti-idiotypic (ab3) antibodies in patients treated with the mouse monoclonal antibody 17-1A (ab1): an important antitumor- al effector function. Hybridoma (1991) (In press).Google Scholar
  81. 81.
    Hoover H C Jr., Syrdyke M, Dangel R B,et al.: Delayed cutaneous hypersensitivity to autologous tumor cells in colorectal cancer patients immunized with an autologous tumor cell: Bacillus Calmette Guérin Vaccine,Cancer Res 44, 1671 (1984).PubMedGoogle Scholar
  82. 82.
    Hoover H C, Surdyke M G, Brandhorst J S,et al.: Five-year follow-up of a controlled trial of active specific immunotherapy in colorectal cancer. Abstract.Proc Am Soc Clin Oncol 9, 106 (1990).Google Scholar
  83. 83.
    Bhattacharya-Chatterjee M, Pride M W, Seon B K,et al.: Idiotype vaccines against human T cell acute iymphoblastic leukemia. I. Generation and characterization of biologically active monoclonal anti- idiotopes.J Immunol 139, 1354 (1987).PubMedGoogle Scholar
  84. 84.
    Steinitz M, Tamir S, Frödin J-E,et al.: Human monoclonal anti-idiotypic antibodies. I. Establishment of immortalized cell lines from a tumor patient treated with mouse monoclonal antibodies.J Immunol 141, 3516 (1988).PubMedGoogle Scholar
  85. 85.
    Steinitz M, Tamir S, Frödin J-E,et al.: Human monoclonal anti-idiotypic antibodies against a murine monoclonal antibody (MAbl7-lA) as an anti-tumor vaccine, in Börrebaeck C, Larrich J (eds):Therapeutic Monoclonal Antibodies., p. 159. London, Stockton Press (1990).Google Scholar
  86. 86.
    Mellstedt H, Frödin J-E, Biberfeld P, et al.: Patients treated with a monoclonal antibody (ab1) to the colorectal carcinoma antigen 17-1A develop a cellular response (DTH) to “the internal image of the antigen” (ab2). Int J Cancer (1991) (In press).Google Scholar
  87. 87.
    Ferrone S, Chen Z J, Yang H,et al: Active specific immunotherapy with murine anti-idiotypic monoclonal antibodies which bear the internal image of the human high molecular weight-melanoma associated antigen (HMW-MAA). Abstract.Proc Ann Meet Am Assoc Cancer Res 31, 474 (1990).Google Scholar
  88. 88.
    Rosenberg S A, Spiess P J, Lafreniere R: A new approach to the adoptive immunotherapy of cancer with tumor infiltrating lymphocytes.Science 233, 1318 (1986).PubMedCrossRefGoogle Scholar
  89. 89.
    Sears H F, Herlyn D, Steplewski Z,et al.: Initial trial use of murine monoclonal antibodies and immunotherapeutic agents for gastrointestinal adenocarcinoma.Hybridoma 5, 109 (1986).Google Scholar
  90. 90.
    LoBuglio A F, Saleh M N, Lee J,et al.: Phase I trial of multiple large doses of murine monoclonal antibody CO 17-1 A. I. Clinical aspects.J Natn Cancer Inst 80, 932 (1988).CrossRefGoogle Scholar
  91. 91.
    Goodman G E, Hellström I, Brodzinsky L,et al.: Phase I trial of murine monoclonal antibody L6 in breast, colon, ovarian and lung cancer.J Clin Oncol 6, 1083 (1990).Google Scholar
  92. 92.
    Dillman R O: Antibody therapy, in Oldham R K (ed):Principles of Cancer Biotherapy p. 291. New York, Raven Press (1987).Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Giuseppe Masucci
    • 1
  • Peter Ragnhammar
    • 1
  • Jan-Erik FrÖdin
    • 1
  • Anna-Lena Hjelm
    • 1
  • Peter WersÄll
    • 1
  • Jan Fagerberg
    • 1
  • Anders Österborg
    • 1
  • HÅkan Mellstedt
    • 1
  1. 1.Department of Oncology (Radiumhemmet)Karolinska HospitalStockholmSweden

Personalised recommendations