Skip to main content
Log in

Bioaccumulation of selected organochlorines in bats and tits: Influence of chemistry and biology

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We analyzed six organochlorine compounds (HCB, lindane, p,p’-DDE, PCB # 138, #153, and # 180) from populations of the European great tit (Parus major) and from five species of bats (Pipistrellus pipistrellus, Nyctalus noctula, Plecotus auritus, Plecotus austriacus, Myotis myotis). A weak positive correlation between Kow (n-octanol /water partition coefficient) and bioaccumulation (measured as residue values) was found within each species. However, the ratio of the concentrations in bats compared to titmice increased significantly with increasing Kow. We argue that this is explained by the intensive juvenile feeding through long-term lactation and thus by the more intensive transfer of strongly lipophilic xenobiotics from mother to juvenile in mammals compared to birds. Further, there were clear variations between bat species with ranges of up to 11 times the lowest value for a single compound. These differences are related to different feeding habits of the adults and to different species-specific life history traits, such as age at maturity and number of offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ariyoshi, N.;Koga, N.;Oguri, K.;Yosimura, H. (1992): Metabolism of 2,4,5,2’,4’,5’-hexachlorobiphenyl with liver microsomes of phenobarbital-treated dog: The possible formation of PCB 2,3-arene oxide intermediate. Xenobiotica 22: 1275–1290.

    Article  CAS  Google Scholar 

  2. Bauer, H. G.;Hölzinger, J.;Nagl, W.;Reinhardt, H.;Schuster, S. (1991): Qualitative Brutvogelerfassung Baden-Württemberg 1987/88 — Hochrechnung der Gesamtbestände. Naturschutzforum 3/3: 123–148.

    Google Scholar 

  3. Borlakoglu, J. T.;Wilkins, J. P. G. (1993): Metabolism of di-, tri-, tetra-, penta- and hexachlorobiphenyls by hepatic microsomes isolated from control animals and animals treated with Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs). Comp. Biochem. Physiol. 105C: 95–125.

    CAS  Google Scholar 

  4. Braun, M. (1986): Rückstandsanalysen bei Fledermäusen. Zeitschrift für Säugetierkunde 51: 212–217.

    Google Scholar 

  5. Bunck, C. M.;Prouty, R. M.;Krynitsky, A. J. (1987): Residues of organochlorine pesticides and polychloribiphenyls in starlings (Sturnus vulgaris), from the continental United States, 1982. Environmental Monitoring and Assessment 8: 59–75.

    Article  CAS  Google Scholar 

  6. Clark, D. R. (1978): Uptake of dietary PCB by pregnant big brown bats (Eptesicus fuscus) and their fetuses. Bull. Environm. Contam. Toxicol. 19: 707–714.

    Article  CAS  Google Scholar 

  7. Clark, D. R.;Prouty, R. M. (1976): Organochlorine residues in three bat species from four localities in Maryland and West Virginia, 1973. Pestic. Monk. J. 10: 44–53.

    CAS  Google Scholar 

  8. Clark, D. R.;Lamont, T. G. (1976): Organochlorine residues in females and nursing young of the big brown bat (Eptesicus fuscus). Bull. Environm. Contam. Toxicol. 15: 1–8.

    Article  CAS  Google Scholar 

  9. Clark, D. R.;Kunz, T. H.;Kaiser T. E. (1978): Insecticides applied to a nursery colony of little brown bats (Myotis lucifugus): Lethal concentrations in brain tissues. J. Mamm. 59: 84–91.

    Article  Google Scholar 

  10. Daelemans, F. F.;Mehlum, F.;Schepens, P. J. C. (1992): Polychlorinated biphenyls in two species of arctic seabirds from the Svalbard area. Bull. Environ. Contam. Toxicol. 48: 828–834.

    Article  CAS  Google Scholar 

  11. Disser, J.;Nagel, A. (1989): Polychlorinated biphenyls in a maternity colony of the common pipistrelle (Pipistrellus pipistrellus). In: European Bat Research 1987, eds.V. Hanak, I. Horacek, J. Gaisler. Charles University Press, Praha, 637–644.

    Google Scholar 

  12. Disser, J.;Brunn, H.;Nagel, A.;Prinzinger, R. (1992): Untersuchungen zur Belastung von Vogeleiern mit Chlorkohlenwasserstoffen unter besonderer Berücksichtigung der PCBs. Ökologie der Vögel (Ecology of Birds) 14: 173–209.

    Google Scholar 

  13. Drescher-Kaden, U.;Hutterer, R. (1981): Rückstände an Organohalogenverbindungen (CKW) in Kleinsäugern verschiedener Lebensweise — Untersuchungen an Wildfängen und Fütterungsversuche. Ökol. Vögel 3: 127–142.

    Google Scholar 

  14. Frank, H.;Nagel, A.;Weigold, H. (1980): Bestandsentwicklung der in Höhlen überwinternden Fledermäuse auf der Schwäbischen Alb. Die Höhle 31: 112–116.

    Google Scholar 

  15. Glutz von Blotzheim, U. N.;Bauer, K. M. (1993):Parus major Linnaeus 1758 — Kohlmeise. In: Handbuch der Vögel Mitteleuropas 13/I: 678–808. Aula, Wiesbaden.

    Google Scholar 

  16. Hawker, D. W.;Connell, D. W. (1988): Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ. Sci. Technol. 22: 382–387.

    Article  CAS  Google Scholar 

  17. Mason, C. F.;MacDonald, S. M.;Bland, H. C.;Ratford, J. (1992): Organochlorine pesticide and PCB contents in otter (Lutra lutra) scats from Western Scotland. Water, Air, and Soil Pollution 64: 617–626.

    Article  CAS  Google Scholar 

  18. Müller, P. (1985): Zur Rückstandssituation bei freilebenden Tieren der Bundesrepublik Deutschland. Mitteil. Fachricht. Biogeographie Univ. Saarland. Saarbrücken. 15: 1–54.

    Google Scholar 

  19. Müller, E. (1993): Fledermäuse in Baden-Württemberg II. Eine Kartierung durch die AG Fledermausschutz Baden-Württemberg in den Jahren 1986–1992. Beih. Veröff. Naturschutz Landschaftspflege. Bad.-Württ. 75: 9–96.

    Google Scholar 

  20. Nagel, A.;Disser, J. (1987): Untersuchungen zur Belastung einer Wochenstube von Zwergfledermäusen (Pipistrellus pipistrellus) mit Chlorkohlenwasserstoffen. Verh. Dt. Zool. Ges. 80: 215–216.

    Google Scholar 

  21. Nagel, A.;Disser, J. (1990): Rückstände von Chlorkohlenwasserstoff-Pestiziden in einer Wochenstube der Zwergfledermaus (Pipistrellus pipistrellus). Zeitschrift für Säugetierkunde 55: 217–225.

    Google Scholar 

  22. Nagel, A.;Nagel, R. (1991 a): Bestandsentwicklung überwinternder Fledermäuse auf der Schwäbischen Alb von 1979/80 bis 1989/90. Zeitschrift für Säugetierkunde, Sonderheft, 56: 35–36.

    Google Scholar 

  23. Nagel, A.;Winter, S.;Streit, B. (1991): Residues of chlorinated hydrocarbons in six European bat species. Bat Research News 32: 20–21.

    Google Scholar 

  24. Nagel, R.;Loskill, R. (1991): Bioaccumulation in Aquatic Systems. VCH, Weinheim.

    Google Scholar 

  25. Neubert, D. (1994): Reproduktion und Entwicklung. S. 313–349. In:Marquardt, H. &Schäfer, S.G.: Lehrbuch der Toxikologie. BI Wissenschaftsverlag, Mannheim.

    Google Scholar 

  26. Neuweiler, G. (1993): Biologie der Fledermäuse. G. Thieme, Stuttgart 1993.

    Google Scholar 

  27. Perry, A. S.;Sidis, I.;Zemach, A. (1990): Organochlorine insecticide residues in birds and bird eggs in the coastal plain of Israel. Bull. Environ. Contam. Toxicol. 45: 523–530.

    Article  CAS  Google Scholar 

  28. Roer, H. (1981): Zur Bestandsentwicklung einiger Fledermäuse in Mitteleuropa. Myotis 18/19 60–67.

    Google Scholar 

  29. Streit, B. (1992): Bioaccumulation processes in ecosystems. Experientia 48: 955–970.

    Article  CAS  Google Scholar 

  30. Streit, B. (1994): Lexikon Ökotoxikologie. 2. Aufl. VCH Weinheim, XXI + 901 pp.

    Google Scholar 

  31. Streit, B.;Nagel, A. (1993): Element assessment in tissue samples from European bats. Fresenius Environmental Bulletin Vol. 2: 162–167.

    CAS  Google Scholar 

  32. Streit, B.;Nagel, A. (1993): Heavy metal transfer by lactation in a bat colony. Fresenius Environmental Bulletin Vol. 2: 168–173.

    CAS  Google Scholar 

  33. Streit, B.;Siré, E.-O.;Kohlmaier, G. H.;Badeck, F.-W.;Winter, S. (1991): Modelling ventilation efficiency of teleost fish gills for pollutants with high affinity to plasma proteins. Ecol. Modelling 57: 237–262.

    Article  CAS  Google Scholar 

  34. Streit, B.;Sire, E.-O. (1993): On the role of blood proteins for uptake, distribution, and clearance of waterborne lipophilic xenobiotics by fish: A linear system analysis. Chemosphere 26: 1031–1039.

    Article  CAS  Google Scholar 

  35. Subramanian, A. N.;Tanabe, S.;Tanaka, H.;Hidaka, H.;Tat-Sukawa, R. (1987): Gain and loss rates and biological half-life of PCBs and DDE in the bodies of Adélie penguins. Environmental Pollution 43: 39–46.

    Article  CAS  Google Scholar 

  36. Winter, S.;Streit, B. (1992): Organochlorine compounds in a three-step terrestrial food chain. Chemosphere 24: 1765–1774.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Streit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streit, B., Winter, S. & Nagel, A. Bioaccumulation of selected organochlorines in bats and tits: Influence of chemistry and biology. Environ. Sci. & Pollut. Res. 2, 194–199 (1995). https://doi.org/10.1007/BF02986762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986762

Keywords

Navigation