Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections

  • Lavanya Reddivari
  • Anna L. Hale
  • J. Creighton MillerEmail author


In order to identify elite parental lines for use in breeding programs emphasizing human health benefits, specialty (colored) potato selections from the Texas Potato Variety Development Program were analyzed for antioxidant activity (AA) using 2,2-diphenyl-l-picrylhy-drazyl (DPPH) and 2,2-azinobis (3-ethyl-benzothiazo-line-6-sulfonic acid) (ABTS) radical assays, total phenolic content (TP) using Folin-Ciocalteu reagent (FCR), and phenolic composition using high performance liquid chromatography (HPLC). Total AA ranged from 157 μg trolox equivalents (TE)/gfw to 832 μg TE/gfw and 810 μg TE/gfw to 1622 μg TE/gfw using the DPPH and ABTS assays, respectively. TP ranged from 221 μg chlorogenic acid equivalents (CGAE)/gfw to 1252 μg CGAE/gfw. Selection COH2F2-2P/P had the highest AA and TP. Purple flesh selections had the highest AA and TP, followed by red flesh and yellow flesh selections. Selections with similar flesh color did not differ significantly in AA and TP. A significant positive correlation was observed between AA and TP. Chlorogenic acid, gallic acid, catechin, caffeic acid, and malvidin-3-(p-coumaryl rutinoside)-5-galactoside were the major polyphenols identified. Chlorogenic acid accounted for 50 to 70% of TP, followed by catechin, gallic acid and caffeic acid. Contribution of individual phenolics in specialty potatoes to AA was calculated using pure standards. Chlorogenic acid contributed 28 to 45% to AA, followed by gallic acid, catechin and caffeic acid.

Additional Keywords

Antioxidant capacity HPLC Solanum tuberosum 



antioxidant activity


total phenolic content


phenolic composition


Con el fin de identificar líneas selectas de progenitores para utilizarlas en programas de mejoramiento, poniendo énfasis en beneficios de la salud humana, se analizaron selecciones de papa de pulpa coloreada del Programa de Mejoramiento de Variedades de Papa de Texas para determinar la actividad antioxidante (AA), utilizando ensayos con el radical 2,2 difenil-1-picrilhidracida (DPPH) y 2,2 azinobis (3-etil-benzotiazolina-6-ácido sufünico) (ABTS), contenido total fenülico (TP) utilizando el reactivo Folin-Ciocalteu (FCR) y la compositiün fenülica utilizando la cromatografía líquida de alta resolutiün (HPLC). El total de AA variü de 157 μg equivalentes trolox (TE)/gfw a 832 μg TE/gfw y de 810 μg TE/gfw a 1622 pg TE/gfw utilizando las pruebas DPPH y ABTS respectivamente. El TP registrü de 221 μg equivalentes de ácido clorogénico (CGAE)/gfw a 1252 μg CGAE/gfw. La selectiün COH2F2-2P/P tuvo los más altos AA y TP. Las selecciones con pulpa morada tuvieron los más altos AA y TP seguidos de selecciones de pulpa roja y amarilla. Selecciones con color de pulpa similar no se diferenciaron significativamente en AA y TP. Una correlatiün positiva significativa se observü entre AA y TP. Los principales polifenoles identificados fueron ácido clorogénico, ácido gálico, catequina, ácido cafeico y malvidina-3-(p-cumaril rutinosida)-5-galactosida. El ácido clorogénico fue estimado en 50 a 70% de TP, seguido de catequina, ácido gálico y ácido cafeico. La contributiün de fenoles individuales a AA en papas especiales fue calculada utilizando estándares puros. El ácido clorogénico contribuyü de 28 a 45% a AA, seguido por ácido gálico, catequina y ácido cafeico.

Literature Cited

  1. Al-Saikhan MS. 2000. Antioxidants, proteins, and carotenoids in potato(Solatium tuberosum L.). Ph.D. dissertation, Texas A&M University, College Station, TX, USA.Google Scholar
  2. Al-Saikhan MS, LR Howard and JC Miller, Jr. 1995. Antioxidant activity and total phenolics in different genotypes of potato(Solarium tuberosum L.). J Food Sci 60:341–343.CrossRefGoogle Scholar
  3. Aral Y, S Watanabe, M Kimira, K Shimoi, R Mochizuki and N Kinae. 2000. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250.Google Scholar
  4. Arnao MB. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci Technol 11:419–421.CrossRefGoogle Scholar
  5. Awika JM, LW Rooney, X Wu, RL Prior and L Cisneros-Zevallos. 2003. Screening methods to measure antioxidant activity of sorghum(Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662.PubMedCrossRefGoogle Scholar
  6. Bor JY, HY Chen and GC Yen. 2006. Evaluation of antioxidant activity and inhibitory effect of nitric oxide production of some common vegetables. J Agric Food Chem 54:1680–1686.PubMedCrossRefGoogle Scholar
  7. Brand-Williams W, ME Cuvelier and C Berset. 1995. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30.Google Scholar
  8. Brown CR. 2005. Antioxidants in potato. Amer J Potato Res 82:163–172.CrossRefGoogle Scholar
  9. Friedman M. 1997. Chemistry, biochemistry, and dietary role of potato polyphenols: A review. J Agric Food Chem 45:1523–1540.CrossRefGoogle Scholar
  10. Giusti MM, LE Rodriquez-Saona and RE Wrolstad. 1999. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637.PubMedCrossRefGoogle Scholar
  11. Gomes CA, TG da Cruz, JL Andrade, N Milhazes, F Borges and MP Marques. 2003. Anticancer activity of phenolic acids of natural or synthetic origin: A structure-activity study. J Med Chem 46:5395–5401.PubMedCrossRefGoogle Scholar
  12. Hale A. 2003. Screening potato genotypes for antioxidant activity, identification of the responsible compounds, and differentiating Russet Norkotah strains using AFLP and microsatellite marker analysis. Ph.D. dissertation, Texas A & M University, College Station, TX, USA.Google Scholar
  13. Ho E, TW Boileau and TM Bray. 2004. Dietary influences on endocrine- inflammatory interactions in prostate cancer development. Archives Biochem Biophys 428:109–117.CrossRefGoogle Scholar
  14. Kanatt SR, R Chander, P Radhakrishna and A Sharma. 2005. Potato peel extract—A natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J Agric Food Chem 53:1499- 1504.PubMedCrossRefGoogle Scholar
  15. Kolasa K. 1993. The potato and human nutrition. Am Potato J 70:75–384.CrossRefGoogle Scholar
  16. Leong LP and G Shui. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75.CrossRefGoogle Scholar
  17. National Potato Council. 2005. Potato Statistical Yearbook. Washington, DC, USA.Google Scholar
  18. Re R, N Pellegrini, A Proteggente, A Pannala, M Yang and C Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237.CrossRefGoogle Scholar
  19. Rodriquez de Sotillo D, M Hadley and C Wolf-Hall. 1998. Potato peel extract: A non-mutagenic antioxidant with potential antimicrobial activity. J Food Sci 63:907–910.CrossRefGoogle Scholar
  20. SAS. 2004. Statistical Analysis Software, Cary, NC.Google Scholar
  21. Scalzo J, A Politi, N Pellegrini, B Mezzetti and M Battino. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutr 21:207–213.CrossRefGoogle Scholar
  22. Singleton VL, R Orthofer and RM Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152- 178.CrossRefGoogle Scholar
  23. Siwawej S and N Jaisaard. 2003. Extraction of phenolic compounds from potato peel. Proceedings of 41st Kasetsart University Annual Conference, Bangkok, Thailand, pp 12-19.Google Scholar
  24. Stratil P, B Klejdus and V Kuban. 2006. Determination of total content of phenolic compounds and their antioxidant activity in vegetables—Evaluation of spectrophotometric methods. J Agric Food Chem 54:607–616.PubMedCrossRefGoogle Scholar
  25. Verde Mendez C del M, MA Rodriguez Delgado, EM Rodriguez Rodriguez and C Diaz Romero. 2004. Content of free phenolic compounds in cultivars of potatoes harvested in Tenerife (Canary Islands). J Agric Food Chem 52:1323–1327.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Lavanya Reddivari
    • 1
  • Anna L. Hale
    • 1
  • J. Creighton Miller
    • 1
    Email author
  1. 1.Department of Horticultural SciencesUSA

Personalised recommendations