Journal of Genetics

, 49:264 | Cite as

The distribution of the numbers of mutants in bacterial populations

  • D. E. Lea
  • C. A. Coulson

Summary

Statistical calculations are made of the distribution numbers of mutants in a culture of bacteria in which the number of mutants increases on account both of new mutations and of division of old mutants. In this way the largely qualitative conclusions of Luria and Delbruck are extended and placed on a firm quantitative basis. The results of these calculations, which enable the mutation rate to be inferred from experiments with parallel cultures, are presented in the form of tables. Statistically efficient methods of using these tables are discussed.

References

  1. Adolph, E. F. &Bayne-Jones, S. (1932).J. Cell. Comp. Physiol. 1, 409.CrossRefGoogle Scholar
  2. Demerec, M. (1945).Proc. Nat. Acad. Sci., Wash.,31, 16.CrossRefGoogle Scholar
  3. Fisher, R. A. (1938).Statistical Theory of Estimations. Calcutta University Readership lectures.Google Scholar
  4. Fisher, R. A. &Yates, F. (1938).Statistical Tables for Biologists, Agriculturalists and Medical Research. Edinburgh: Oliver and Boyd.Google Scholar
  5. Lewis, I. M. (1934).J. Bact. 28, 619.PubMedGoogle Scholar
  6. Luria, S. E. &Delbruck, M. (1943).Genetics,28, 491.PubMedGoogle Scholar
  7. Molina, E. C. D. (1942).Poisson's Exponential Binomial Limit Tables. New York: Van Nostrand.Google Scholar
  8. Stewart, F. M. (1947).J. Hyg., Camb.,45, 28.CrossRefGoogle Scholar
  9. Witkin, E. M. (1946).Proc. Nat. Acad. Sci., Wash.,32, 59.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1949

Authors and Affiliations

  • D. E. Lea
    • 1
  • C. A. Coulson
    • 2
  1. 1.Department of Radiotherapeutics and Strangeways LaboratoryCambridge
  2. 2.Wheatstone Physics LaboratoryKing's CollegeLondon

Personalised recommendations