Skip to main content
Log in

Effects of forskolin on endogenous dopamine and acetylcholine release in rat neostriatal slices

Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The involvement of the cyclic AMP (cAMP) effector system in the release of endogenous dopamine and acetylcholine from the rat neostriatum was assessed. Forskolin, an activator of adenylate cyclase, was used to enhance cAMP production, and the consequence of this enhancement on the spontaneous and potassium stimulated release of dopamine and a-cetylcholine was evaluated. Neostriatal slices were prepared from Fischer 344 rats and after a preincubation period the release of each endogenous neurotransmitter was measured from the same slice preparation. To measure acetylcholine release the slice acetylcholinesterase (AChE) activity was inhibited with physostigmine, but the release from slices with intact AChE activity was also determined (choline, instead of acetylcholine was detected in the medium). Under both conditions forskolin induced a significant dose-dependent increase in the potassium-evoked release of dopamine. In the same tissue preparations the release of neither acetylcholine (AChE inhibited) nor choline (AChE intact) was affected by forskolin. The results indicate that the cAMP second messenger system might be involved in neuronal mechanisms that enhance neostriatal dopamine release, but stimulation of this second messenger by forskolin does not further enhance neostriatal acetylcholine release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References Cited

  • Baizer, L. and Weiner, N., Nerve greowth factor treatment enhances nicotine-stimulated dopamine release and increases in cyclic adenosine 3′∶5′-monophosphate levels in PC 12 cell cultures.J. Neurosci., 5, 1176–179 (1985).

    PubMed  CAS  Google Scholar 

  • Beani, L., Bianchi, C., Siniscalchi, A., Sivilotti, L., Tanganelli, S. and Veratti, E., Different approaches to study acetylcholine release: endogenous ACh verses tritium efflux.Naunyn Schmiedeberg's Arch. Pharmacol., 328, 119–126 (1984).

    Article  CAS  Google Scholar 

  • Bowyer, J.F. and Weiner, N., K+-channel and adenylate cyclase involvement in regulation of Ca++-evoked release of [3H]dopamine from synaptosomes.J. Pharmacol. Exp. Ther., 248, 514–520 (1989).

    PubMed  CAS  Google Scholar 

  • Briggs, C. A., McAfee, D. A. and McCaman, R. E., Longterm regulation of synaptic acetylcholine release and nicotinic transmission.Br. J. Pharmacol., 93, 399–411 (1988).

    PubMed  CAS  Google Scholar 

  • Cubeddu, L. X. and Hoffman, I. S., Frequency-dependent release of acetylcholine and dopamine from rabbit striatum: its modulation by dopaminergic receptors.J. Neurochem., 41, 94–101 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Dryden, W. F., Singh, Y. N., Gordon, T. and Lazarenko, G., Pharmacological elevation of cAMP and transmitter release at the mouse neuromuscular junction.Can. J. Physiol. Pharmacol., 66, 207–212 (1987).

    Google Scholar 

  • Freeman, J. J., Choi, R. L. and Jenden, D. J., Plasma choline, its turnover and exchange with brain choline.J. Neurochem., 24, 729–734 (1975).

    PubMed  CAS  Google Scholar 

  • Herdon, H., Strupish, J. and Nahorski, S. R., Differences between the release of radiolabelled and endogenous dopamine from superfused rat brain slices: Effects of depolizing stimuli, amphetamine and synthesis inhibition.Brain Res., 348: 309–320 (1985)

    Article  PubMed  CAS  Google Scholar 

  • Jenden, D. J., Roch, M. and Booth, R., Simultaneous measurement of endogenous and deuterium labeled tracer variants of choline and acetylcholine in subpicomole quantities by gas chromatography mass spectrometry.Anal. Biochem., 55, 438–448 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.-J., Alcorn, L. M. and Weiler, M. H., Effects of various experimental manipulation on neostriatal a-cetylcholine and dopamine release.Neurochemical Res., 16, 875–883 (1991).

    Article  CAS  Google Scholar 

  • Lehman, J. and Langer, S. Z., Muscarinic receptors on dopamine terminals in the cat caudate nucleus: Neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine.Brain Res., 248, 61–69 (1982).

    Article  Google Scholar 

  • Lehman, J. and Langer, S. Z., The striatal cholinergic interaction: synaptic target of dopaminergic terminals?Neurosci., 10, 1105–1120 (1983).

    Article  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin reagent.J. Biol. Chem., 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  • Markstein, R., Digges, K., Marshall, N. R. and Starke, K., Forskolin and the release of noradrenaline in cerebrocortical slices.Naunyn Schmeideberg's Arch. Pharmacol., 325, 17–24 (1984).

    Article  CAS  Google Scholar 

  • Masserano, J. M. and Weiner, N., Tyrosine hydroxylase regulation in the central nervous system.Mol. Cell. Biochem., 53/54, 129–152 (1983).

    Article  Google Scholar 

  • McIlwain, H. and Rodnight, R., Preparing neural tissues for metabolic studyin vitro. In McIlwain, H. (Eds.),Practical Neurochemistry, Churchill, London, pp. 109–188, 1962.

    Google Scholar 

  • Patrick, R. L. and Barchas, J. D., Dopamine synthesis in rat brain striatal synaptosomes. II. Dibutyryl cyclic adenosine 3′∶5′-monophosphoric acid and 6-methyltetrahydropteridine-induced synthesis increase without an increase in endogenous dopamine release.J. Pharmacol. Exp. Ther. 197, 97–104 (1976).

    PubMed  CAS  Google Scholar 

  • Reese, J. H. and Cooper, J. R., Stimulation of a-cetylcholine release from Guinea-pig ileal synaptosomes by cyclic nucleotides and forskolin. Biochemical Pharmacol., 33, 3007–3011, (1984).

    Article  CAS  Google Scholar 

  • Seamon, K. B. and Daly, J. W., Forskolin, cyclic AMP and cellular physiology.Trends Pharmacol. Sci., 4, 120–123 (1983).

    Article  CAS  Google Scholar 

  • Seamon, K. B., Padgett, W. and Daly, J. W., Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells.Proc. Natl. Acad. Sci. USA, 78, 3363–3367 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Stoof, J. C. and Kebabian, K. W., Independentin vitro regulation by D2-dopamine receptor of dopamine-stimulated efflux of cAMP and K+-stimulated release of acetylcholine from rat neostriatum.Brain Res., 250, 263–270 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto, A., Morita, K., Kitayama, S. and Dohi, T., Facilitation of acetylcholine-evoked CA release by cAMP on isolated perfused dog adrenal glands.Arch. Int. Pharmacodyn. Ther., 279, 304–313 (1986).

    PubMed  CAS  Google Scholar 

  • Weiler, M. H., Muscarinic modulation of endogenous acetylcholine release in rat neostriatal slices. J. Pharm. Exp. Ther. 250, 617–623 (1989).

    CAS  Google Scholar 

  • Weiss, S., Forskolin attenuates the evoked release of [3H]GABA from s striatal neurons in primary culture.Brain Res., 463, 182–186 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Yau, W. M., Dorsett, J. A. and Youther, M. L., Stimulation of acetylcholine release from myenteric neurons of Guinea pig small intestine by forskolin.J. Pharmacol. Exp. Ther., 243, 507–510 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ. Effects of forskolin on endogenous dopamine and acetylcholine release in rat neostriatal slices. Arch. Pharm. Res. 19, 520–528 (1996). https://doi.org/10.1007/BF02986022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986022

Key words

Navigation