Skip to main content
Log in

Usefulness of FDG-microPET for early evaluation of therapeutic effects on VX2 rabbit carcinoma

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine the potential use of high-resolution FDG-microPET for predicting the primary effects of radiotherapy and/or hyperthermia on tumor-bearing rabbits.

Methods

Twenty-eight VX2 xenografts in the thighs of rabbits were divided into the following 5 treatment groups: radiotherapy at a single dose of 10, 20 or 30 Gy, hyperthermia (43 degrees Celsius, 1 hour), and the combination of radiotherapy and hyperthermia ( 10 Gy + 43 degrees Celsius, 1 hour). FDG-microPET images were obtained by using a microPET P4 system at pretreatment and at 24 hours and 7 days after treatment. For the evaluation by FDG-microPET, tumor/muscle (T/M) ratios, retention index [RI = (T/M ratio at 120 min - T/M ratio at 60 min) / T/M ratio at 60 min], and time activity curve (TAC) were acquired.

Results

We divided the xenografts into a responder group (partial response + stable disease, n = 14) and a non-responder group (progressive disease, n = 14). The T/M ratio at 24 hours after the treatment in the responder group was decreased remarkably with that at pre-treatment (p < 0.05), while in the non-responder group it showed no significant change between the time points. The RI and TAC patterns were comparable to T/M ratios in each treatment group. T/M ratios, RI, and TAC indicated marked changes at the time point of 24 hours in the responder group, although the tumors did not show any significant change in volume at that time. Photomicrographs of sections showed that the number of viable tumor cells in the responder group decreased at 24 hours after treatment and that inflammatory cell infiltration was marked and almost all viable tumor cells had disappeared by day 7 after treatment.

Conclusion

These results suggest that early evaluation by FDG-microPET, especially 24 hours after treatment, is useful to predict the primary effects of the treatment. Histological analysis showed that inflammatory cell infiltration at 7 days after treatment was considered to be a cause of accumulation of FDG in the tumors that showed a significant decrease in tumor cell number. This false-positive should be noted when predicting tumor response by FDG accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 990; 31:1927–1932.

    Google Scholar 

  2. Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors: a powerful diagnostic and prognostic tool.Invest Radiol 1987; 22:360–371.

    Article  PubMed  Google Scholar 

  3. Slosman DO, Spiliopoulos A, Couson F, Nicod L, Louis O, Lemoine R, et al. Satellite PET and lung cancer: a prospective study in surgical patients.Nucl Med Commun 1993; 14:955–961.

    Article  PubMed  CAS  Google Scholar 

  4. Gupta NC, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET.J Nucl Med 1996; 37:943–948.

    PubMed  CAS  Google Scholar 

  5. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al.18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax.J Nucl Med 2003; 44:540–548.

    PubMed  CAS  Google Scholar 

  6. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients.EurJ Nucl Med 1996; 23:1409–1415.

    Article  CAS  Google Scholar 

  7. Torizuka T, Nakamura F, Kanno T, Futatsubashi M, Yoshikawa E, Okada H, et al. Early therapy monitoring with FDG-PET in aggressive non-Hodgkin’s lymphoma and Hodgkin’s lymphoma.Eur J Nucl Med Mol Imaging 2004; 31:22–28.

    Article  PubMed  Google Scholar 

  8. Koike I, Ohmura M, Hata M, Takahashi N, Oka T, Ogino I, et al. FDG-PET scanning after radiation can predict tumor regrowth three months later.Int J Radiat Oncol Biol Phys 2003; 57:1231–1238.

    PubMed  Google Scholar 

  9. Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Yoshikai T, Fukumura T, et al. Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucose and positron emission tomography.J Nucl Med 1991; 32:1655–1660.

    PubMed  CAS  Google Scholar 

  10. Guay C, Lepine M, Verreault J, Benard F. Prognostic value of PET using18F-FDG in Hodgkin’s disease for posttreatment evaluation.J Nucl Med 2003; 44:1225–1231.

    PubMed  Google Scholar 

  11. Kostakoglu L, Goldsmith SJ. PET in assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus.J Nucl Med 2004; 45:56–68.

    PubMed  Google Scholar 

  12. Yao M, Graham MM, Hoffman HT, Smith RB, Funk GF, Graham SM, et al. The role of post-radiation therapy FDG PET in prediction of necessity for post-radiation therapy neck dissection in locally advanced head-and-neck squamous cell carcinoma.Int J Radiat Oncol Biol Phys 2004; 59:1001–1010.

    Article  PubMed  Google Scholar 

  13. Hicks RJ, Manus MPM, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation.Int J Radiat Oncol Biol Phys 2004; 60:412–418.

    Article  PubMed  Google Scholar 

  14. Gayed I, Vu T, Iyer R, Johnson M, Macapinlac H, Swanston N, et al. The role of18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors.J Nucl Med 2004; 45:17–21.

    PubMed  CAS  Google Scholar 

  15. Kubota K. From tumor biology to clinical PET: A review of positron emission tomography (PET) in oncology.Ann Nucl Med 2001; 15:471–486.

    PubMed  CAS  Google Scholar 

  16. Rege SD, Chaiken L, Hoh CK, Choi Y, Lufkin R, Anzai Y, et al. Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: Quantitation with PET.Radiology 1993; 189:807–812.

    PubMed  CAS  Google Scholar 

  17. Kondo S, Hosono M, Wada Y, Ishii K, Matsumura A, Takada Y, et al. Use of FDG-microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer.Ann Nucl Med 2004; 18:51–57.

    Article  PubMed  Google Scholar 

  18. Abe Y, Matsuzawa T, Fukuda H, Endo S, Yamada K, Sato T, et al. Experimental study for tumor detection using18F-2-fluoro-2-deoxy-D-glucose: imaging of rabbit VX2 tumor with single photon gamma camera.KAKU IGAKU (Jpn J Nucl Med) 1985; 22:389–391.

    CAS  Google Scholar 

  19. Oya N, Nagata Y, Ishigaki T, Abe M, Tamaki N, Magata Y, et al. Evaluation of experimental liver tumors using fluorine-18-2-fluoro-2-deoxy-D-glucose PET.J Nucl Med 1993; 34:2124–2129.

    PubMed  CAS  Google Scholar 

  20. Oya N, Nagata Y, Tamaki N, Takagi T, Murata R, Magata Y, et al. FDG-PET evaluation of therapeutic effect on VX2 liver tumor.J Nucl Med 1996:37; 296–302.

    Google Scholar 

  21. Cherry SR, Shao Y, Silverman RW. MicroPET: a high resolution PET scanner for imaging small animals.IEEE Trans Nucl Sei 1997; 44:1161–1166.

    Article  CAS  Google Scholar 

  22. Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of MicroPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging.J Nucl Med 1999; 40:1164–1175.

    PubMed  CAS  Google Scholar 

  23. Tai YC, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, et al. Performance evaluation of microPET P4: a PET system dedicated to animal imaging.Phys Med Biol 2001; 46:1845–1862.

    Article  PubMed  CAS  Google Scholar 

  24. Weber S, Bauer A. Small animal PET: aspects of performance assessment.Eur J Nucl Med Mol Imaging 2004; 31:1545–1555.

    Article  PubMed  Google Scholar 

  25. Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind JF, Wahl RL. Initial experience in small animal tumor imaging with a clinical positron emission tomogra- phy/computed tomography scanner using 2-[F-18]Fluoro-2-deoxy-D-glucose.Cancer Res 2003; 63:6252–6257.

    PubMed  CAS  Google Scholar 

  26. Kim YH, Choi BI, Cho WH, Urn S, Moon WK, Han JK, et al. Dynamic contrast-enhanced MR imaging of VX2 carcinomas after X-irradiation in rabbits.Invest Radiol 2003; 38:539–549.

    PubMed  CAS  Google Scholar 

  27. Patricio MB, Soares J, Vilhena M. Morphologic and morphometric studies on tumor necrosis produced by radiotherapy, and hyperthermia singly and in combination.J Surg Oncol 1989; 42:5–10.

    Article  PubMed  CAS  Google Scholar 

  28. Nishiue T, Kojima O. Local treatment of rabbit VX2 rectal carcinoma with combined hyperthermia and intratumoral CDDP injection,lnt J Hyperthermia 1994; 10:619–626.

    Article  CAS  Google Scholar 

  29. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorode-oxyglucosein vivo: High accumulation in macrophages and granulation tissues studied by microautoradiography.J Nucl Med 1992; 33:1972–1980.

    PubMed  CAS  Google Scholar 

  30. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point18F-FDG PET imaging for differentiating malignant from inflammatory processes.J Nucl Med 2001; 42:1412–1417.

    PubMed  CAS  Google Scholar 

  31. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue.J Nucl Med 1995; 36:1301–1306.

    PubMed  CAS  Google Scholar 

  32. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection.Eur J Nucl Med 2001; 28:696–703.

    Article  PubMed  CAS  Google Scholar 

  33. Hustinx R, Smith RJ, Benard F. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck.Eur J Nucl Med 1999; 26:1345–1348.

    Article  PubMed  CAS  Google Scholar 

  34. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of18F-FDG uptake in soft tissue masses.Eur J Nucl Med 1999; 26:22–30.

    Article  PubMed  CAS  Google Scholar 

  35. Nakamoto Y, Saga T, Higashi T, Ishimori T, Kobayashi H, Ishizu K, et al. Optimal scan time for evaluating pancreatic disease with positron emission tomography using F-18- fluorodeoxyglucose.Ann Nucl Med 2003; 17:421–426.

    Article  PubMed  Google Scholar 

  36. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, et al. (18)F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation.J Nucl Med 2002; 43:658–663.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, K., Hosono, M.N., Wada, Y. et al. Usefulness of FDG-microPET for early evaluation of therapeutic effects on VX2 rabbit carcinoma. Ann Nucl Med 20, 123–130 (2006). https://doi.org/10.1007/BF02985624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985624

Key words

Navigation