Skip to main content
Log in

Use of FDG-microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The performance of microPET using18F-FDG was evaluated in a rabbit model of hematogenous pulmonary metastatic cancer.

Methods

A total of 15 Japanese white rabbits and VX-2 carcinoma were used in this study. In the microPET study, tumor-bearing rabbits were administered intravenously 74 MBq of18F-FDG, and 30 min later, the emission data were acquired for 60 min. The transmission scans were performed with a68Ge/68Ga external point source. To augment the anatomical information, we performed multi-detector row computed tomography (MDCT) in the combination with MDCT and microPET on 10 rabbits. The other 5 rabbits were followed once a week for 5 weeks only by microPET. Tumor/muscle (T/M) ratios were used for quantitative evaluation in this study.

Results

Multiple pulmonary nodules were detected by MDCT and microPET starting 14 days after the tumor injection. The high-uptake lesions in the lung detected by microPET corresponded well to the tumors detected by MDCT. The smallest nodule detected by microPET was ca. 1.5 mm in diameter. Overall, 87 nodules were detected by MDCT and the ratios of lesions detected by microPET to those by MDCT were 35.3%, 77.5%, and 90% for tumors equal to or smaller than 2 mm, 2-4 mm, and 4-6 mm in diameter, respectively. The respective T/M ratios were 2.41 ±0.41, 2.93 ± 0.55, and 3.34 ±0.71. The T/M ratio increased with tumor size, but it was similar in each tumor size category. In the 35-day follow-up protocol, it was possible to follow sequentially the same tumor by the microPET.

Conclusions

By FDG-microPET, it is possible to evaluate tumors larger than 2 mm in diameter and to follow the growth of individual tumors. Our results also suggest that the rabbit model of VX-2 pulmonary metastasis is a stable experimental model for evaluation using FDG. Monitoring of the therapeutic effects of anticancer drugs and radiation therapy could be tried by using this model and microPET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 1990; 31: 1927–1932.

    PubMed  CAS  Google Scholar 

  2. Di Chiro G. Positron emission tomography using [15F] fluorodeoxyglucose in brain tumors: a powerful diagnostic and prognostic tool.Invest Radiol 1987; 22: 360–371.

    Article  PubMed  CAS  Google Scholar 

  3. Slosman DO, Spiliopoulos A, Couson F, Nicod L, Louis O, Lemoine R, et al. Satellite PET and lung cancer: a prospective study in surgical patients.Nucl Med Commun 1993; 14: 955–961.

    Article  PubMed  CAS  Google Scholar 

  4. Hubner KF, Buonocore E, Singh SK, Gould HR, Cotton DW. Characterization of chest masses by FDG positron emission tomography.Clin Nucl Med 1995; 20: 293–298.

    Article  PubMed  CAS  Google Scholar 

  5. Gupta NC, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET.J Nucl Med 1996; 37: 943–948.

    PubMed  CAS  Google Scholar 

  6. Dewan NA, Shehan CJ, Reeb SD, Gobar LS, Scott WJ, Ryschon K, et al. Likelihood of malignancy in a solitary pulmonary nodule: comparison of Bayesian analysis and results of FDG-PET scan.Chest 1997; 112: 416–422.

    Article  PubMed  CAS  Google Scholar 

  7. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al.18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax.J Nucl Med 2003; 44: 540–548.

    PubMed  CAS  Google Scholar 

  8. Yonekura Y, Benua RS, Brill AB, Som P, Yeh SD, Kemeny NE, et al. Increased accumulation of 2-deoxy-2-18F-2-fluoro-d-glucose in liver metastases from colon carcinoma.J Nucl Med 1982; 23: 1133–1137.

    PubMed  CAS  Google Scholar 

  9. Messa C, Choi Y, Hoh CK, Jacobs EL, Glaspy JA, Rege S, et al. Quantification of glucose utilization in liver metastases: parametric imaging of FDG uptake with PET.J Comput Assist Tomogr 1992; 16: 684–689.

    Article  PubMed  CAS  Google Scholar 

  10. Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989; 170: 329–332.

    PubMed  CAS  Google Scholar 

  11. Okazumi S, Isono K, Enomoto K, Kikuchi T, Ozaki M, Yamamoto H, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment.J Nucl Med 1992; 33: 333–339.

    PubMed  CAS  Google Scholar 

  12. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (18F): nontoxic tracer for rapid tumor detection.J Nucl Med 1980; 21: 670–675.

    PubMed  CAS  Google Scholar 

  13. Fukuda H, Matsuzawa T, Abe Y, Endo Y, Kubota K, Hatazawa J, et al. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs:18F-2-fluoro-deoxy-d-mannose: a new tracer for cancer detection.Eur J Nucl Med 1982; 7: 294–297.

    PubMed  CAS  Google Scholar 

  14. Fukuda H, Yoshioka S, Watanuki S, Kiyosawa M, Sato T, Matsuzawa T, et al. Experimental study for cancer diagnosis with18FDG: differential diagnosis of inflammation from malignant tumor.KAKU IGAKU (Jpn J Nucl Med) 1983; 20: 1189–1192.

    CAS  Google Scholar 

  15. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Autoradiographic demonstration of [18F]FDG distribution within mouse FM3A tumor tissuein vivo.KAKU IGAKU (Jpn J Nucl Med) 1992; 29: 1215–1221.

    CAS  Google Scholar 

  16. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, et al. Increased18F-FDG uptake in a model of inflammation: Concanavalin A-mediated lymphocyte activation.J Nucl Med 2001; 43: 658–663.

    Google Scholar 

  17. Cherry SR, Shao Y, Silverman RW, Meador K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals.IEEE Trans Nucl Sci 1997; 44: 1161–1166.

    Article  CAS  Google Scholar 

  18. Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging.J Nucl Med 1999; 40: 1164–1175.

    PubMed  CAS  Google Scholar 

  19. Tai YC, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, et al. Performance evaluation of microPET P4: a PET system dedicated to animal imaging.Phys Med Biol 2001; 46: 1845–1862.

    Article  PubMed  CAS  Google Scholar 

  20. Moore A, Osteen CL, Chatziioannou AF, Hovda DA, Cherry SR. Quantitative assessment of longitudinal metabolic changesin vivo after traumatic brain injury in the adult rat using FDG-microPET.J Cereb Blood Flow Metab 2000; 20: 1492–1501.

    Article  PubMed  CAS  Google Scholar 

  21. Komblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR.In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET).Nature Biotech 2000; 18: 655–660.

    Article  CAS  Google Scholar 

  22. Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different type of anesthesia: Comparison between quantitative data obtained with microPET andex vivo autoradiography.Neuroimage 2003; 20: 2040–2050.

    Article  PubMed  Google Scholar 

  23. Oyama N, Kim J, Jones LA, Mercer NM, Engelbach JA, Sharp TL, et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate cancer tumor model.Nucl Med Biol 2002; 29: 783–790.

    Article  PubMed  CAS  Google Scholar 

  24. Oya N, Nagata Y, Ishigaki T, Abe M, Tamaki N, Magata Y, et al. Evaluation of experimental liver tumors using fluorine-18-2-deoxy-d-glucosePET.J Nucl Med 1993; 34: 2124–2129.

    PubMed  CAS  Google Scholar 

  25. Oya N, Nagata Y, Tamaki N, Takagi T, Murata R, Magata Y, et al. FDG-PET evaluation of therapeutic effect on VX2 liver tumor.J Nucl Med 1996; 37: 296–302.

    PubMed  CAS  Google Scholar 

  26. Kim WS, Im JG, Chung EC, Han MH, Han JK, Han MC, et al. Hematogenous pulmonary metastasis: an experimental study using VX-2 carcinoma in rabbits.Acta Radiologica 1993; 34: 581–585.

    Article  PubMed  CAS  Google Scholar 

  27. Kidd JG, Rous P. A transplantable rabbit carcinoma originating in a virus-induced papilloma and containing the virus in masked or altered form.J Exp Med 1940; 71: 813.

    Article  PubMed  CAS  Google Scholar 

  28. Concorde Microsystems: A primer for quantification using microPET systems. Rev. 3, microPET manuals, 2003. 29. Burgener FA. Peripheral hepatic artery embolization in rabbits with VX2 carcinomas of the liver.Cancer 1980; 46: 56–63.

    Article  Google Scholar 

  29. Burgener FA, Gothlin JH. Angiographic, microangiographic and hemodynamic evaluation of hepatic artery embolization in the rabbit.Invest Radiol 1978; 13: 306–312.

    Article  PubMed  CAS  Google Scholar 

  30. Wolf HJ, Bitman WR, Voelkel EF, Griffiths HJ, Tashjian AH. Systemic effects of the VX2 carcinoma on the osseous skeleton. A quantitative study of trabecular bone.Lab Invest 1978; 38: 208.

    Article  Google Scholar 

  31. Pillai KM, McKeever PE, Knutsen CA, Terrio PA, Prieskom DM, Ensminger WD. Microscopic analysis of arterial microsphere distribution in rabbit liver and hepatic VX2 tumor.Sel Cancer Ther 1991; 7: 39–48.

    PubMed  CAS  Google Scholar 

  32. Hanai K, Tukagosi S, Muramatu S. Optimum techniques for helical and nonhelical CT.Gazou Shindan (Japanese Journal of Diagnostic Imaging) 2001; 21: 765–775. (in Japanese)

    Google Scholar 

  33. Vaska P, Alexoff DL. Effects of natural LSO radioactivity on microPET quantitation. [abstract]J Nucl Med 2003; 44 (Suppl): p138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, S., Hosono, M.N., Ishii, K. et al. Use of FDG-microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer. Ann Nucl Med 18, 51–57 (2004). https://doi.org/10.1007/BF02985614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985614

Key words

Navigation