Skip to main content
Log in

Distinct different intra-tumor distribution of FDG between early phase and late phase in mouse fibrosarcoma

  • Orojinal Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

An early image of intra-tumor distribution of14C-labeled fluorodeoxy glucose (14C-FDG) was compared with a late image of18F-labeled FDG (18F-FDG) using mouse fibrosarcoma. Heterogeneous intra-tumor distribution of14C-FDG was observed 1 minute post injection of the tracer, whereas relatively homogeneous distribution of18F-FDG was seen 30 minutes later.14C-FDG was particularly taken up in the peripheral part of the tumor immediately after the tracer injection. A gradual and significant increase in18F-FDG accumulation with time was seen in the central part of tumor, which indicated an enhancement of anaerobic glycolysis. An initial uptake of18F-FDG was also compared with distribution of14C-iodoantipyrine and14C-thymidine uptake. Intratumoral distribution of initial uptake of18F-FDG showed almost the same regional distribution of14C-iodoantipyrine. A similar distribution of14C-thymidine as the initial uptake of18F-FDG was also observed. These results indicated that a high initial FDG uptake area seemed to be highly proliferative. A significant difference in the intratumoral distribution of FDG between early phase and late phase seemed to be related to heterogeneous biological characteristics of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose.Radiology 1991; 179:765–770.

    PubMed  CAS  Google Scholar 

  2. Delbeke D. Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma.J Nucl Med 1999; 40:591–603.

    PubMed  CAS  Google Scholar 

  3. Ak I, Stokkel MP, Pauwels EK. Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose in oncology. Part II. The clinical value in detecting and staging primary tumors.J Cancer Res Clin Oncol 2000; 126:560–574.

    Article  PubMed  CAS  Google Scholar 

  4. Okada J, Yoshikawa K, Itami M, Imaseki K, Uno K, Itami J, et al. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity.J Nucl Med 1992; 33:325–329.

    PubMed  CAS  Google Scholar 

  5. Smith TAD, Titley J. Deoxyglucose uptake by head and neck squamous carcinoma: Influence of change in proliferative fraction.Int J Radiat Oncol Biol Phys 2000; 47:219–223.

    PubMed  CAS  Google Scholar 

  6. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F]fiuorodeoxyglucose and positron emission tomography.Neurology 1982; 32:1323–1329.

    Google Scholar 

  7. Nieweg OE, Kim EE, Wong WH, Broussard WF, Singletary SE, Hortobagyi GN, et al. Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer.Cancer 1993; 71:3920–3925.

    Article  PubMed  CAS  Google Scholar 

  8. Vesselle H, Schmidt RA, Pugsley JM, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography.Clin Cancer Res 2000; 6:3837–3844.

    PubMed  CAS  Google Scholar 

  9. Nakata B, Chung YS, Nishimura S, Nishihara T, Sakurai Y, Sawada T, et al.18F-fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic adenocarcinoma.Cancer 1997; 79:695–699.

    Article  PubMed  CAS  Google Scholar 

  10. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF.(F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone, and soft tissue sarcoma.Clin Cancer Res 2000; 6:1279–1287.

    PubMed  CAS  Google Scholar 

  11. Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP. Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies.J Cancer Res Clin Oncol 2000; 126:549–559.

    Article  PubMed  CAS  Google Scholar 

  12. Smith TA. Facilitative glucose transporter expression in human cancer tissue.Br J Biomed Sci 1999; 56:285–292.

    PubMed  CAS  Google Scholar 

  13. Reisser C, Eichhorn K, Herold-Mende C, Born AI, Bannasch P. Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck.Int J Cancer 1999; 80:194–198.

    Article  PubMed  CAS  Google Scholar 

  14. Arora KK, Pedersen PL. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP.J Biol Chem 1988; 263:17422–17428.

    PubMed  CAS  Google Scholar 

  15. Smith TA. Mammalian hexokinases and their abnormal expression in cancer.Br J Biomed Sci 2000; 57:170–178.

    PubMed  CAS  Google Scholar 

  16. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake.J Nucl Med 1996; 37:1042–1047.

    PubMed  CAS  Google Scholar 

  17. Kubota K, Tada M, Yamada S, Hori K, Saito A, Iwata R, et al. Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue.Eur J Nucl Med 1999; 26:750–757.

    Article  PubMed  CAS  Google Scholar 

  18. Gupta N, Gill H, Graeber G, Bishop H, Hurst J, Stephens T. Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions.Chest 1998; 114:1105–1111.

    Article  PubMed  CAS  Google Scholar 

  19. Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer.Eur J Nucl Med 2000; 27:1538–1542.

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi K, Hosoi R, Momosaki S, Koike S, Ando K, Nishimura T, et al. Enhancement of the relative uptake of18F-FDG in mouse fibrosarcoma by rolipram.Ann Nucl Med 2002; 16:507–510.

    PubMed  CAS  Google Scholar 

  21. Bentzen L, Vestergaard-Poulsen P, Nielsen T, Overgaard J, Bjornerud A, Briley-Saebo K, et al. Intravascular contrast agent-enhanced MRI measuring contrast clearance and tumor blood volume and the effects of vascular modifiers in an experimental tumor.Int J Radiat Oncol Biol Phys 2005; 61:1208–1215.

    PubMed  CAS  Google Scholar 

  22. Ostergaard L, Hochberg FH, Rabinov JD, Sorensen AG, Lev M, Kim L, et al. Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors.J Neurosurg 1999; 90:300–305.

    Article  PubMed  CAS  Google Scholar 

  23. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development.J Natl Cancer Inst 2005; 97:172–187.

    Article  PubMed  CAS  Google Scholar 

  24. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, et al. Combretastatin A-4 phosphate as atumor vascular-targeting agent: early effects in tumors and normal tissues.Cancer Res 1999; 59:1626–1634.

    PubMed  CAS  Google Scholar 

  25. Young SD, Marshall RS, Hill RP. Hypoxia induces DNA over replication and enhances metastatic potential of murine tumor cells.Proc Natl Acad Sci USA 1988; 85:9533–9537.

    Article  PubMed  CAS  Google Scholar 

  26. Brown MJ. The hypoxic cell: a target for selective cancer therapy.Cancer Res 1999; 59:5863–5870.

    PubMed  CAS  Google Scholar 

  27. Chapman JD, Franko AJ, Sharplin J. A marker for hypoxic cells in tumours with potential clinical applicability.Br J Cancer 1981; 43:546–550.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, O., Shukuri, M., Hosoi, R. et al. Distinct different intra-tumor distribution of FDG between early phase and late phase in mouse fibrosarcoma. Ann Nucl Med 19, 655–659 (2005). https://doi.org/10.1007/BF02985113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985113

Key words

Navigation