Goldbug variations

Abstract

This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, suprising, or appealing that one has an urge to pass them on. Contributions are most welcome.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Bak, Per; Tang, Chao; Wiesenfeld, Kurt. Self-organized criticality.Phys. Rev. A (3)38 (1988), no. 1, 364–374.

    MathSciNet  Article  Google Scholar 

  2. [2]

    Bjärner, Anders; Lovász, László; Shor, Peter. Chip-firing games on graphs.European J. Combin.12 (1991), no. 4, 283–291.

    MathSciNet  Article  Google Scholar 

  3. [3]

    Blachere, Sebastien. Logarithmic fluctuations for the Internal Diffusion Limited Aggregation. Preprint arXiv:math.PR/0111253 (November 2001).

  4. [4]

    Cooper, Joshua; Spencer, Joel. Simulating a Random Walk with Constant Error. Preprint arXiv:math.CO/0402323 (February 2004); to appear inCombinatorics, Probability and Computing.

  5. [5]

    Dhar, Deepak. Self-organized critical state of sandpile automation models.Phys. Rev. Lett.64 (1990), no. 14, 1613–1616.

    MathSciNet  Article  Google Scholar 

  6. [6]

    Diaconis, Persi; Fulton, William. A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Commutative algebra and algebraic geometry, II (Turin, 1990).Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), no. 1, 95–119 (1993).

    MathSciNet  MATH  Google Scholar 

  7. [7]

    Engel, Arthur. The probabilistic abacus.Ed. Stud. Math.6 (1975), 1–22.

    Article  Google Scholar 

  8. [8]

    Engel, Arthur. Why does the probabilistic abacus work?Ed. Stud. Math.7 (1976), 59–69.

    Article  Google Scholar 

  9. [9]

    Lawler, Gregory; Bramson, Maury; Griffeath, David. Internal diffusion limited aggregation.Ann. Probab.20 (1992), no. 4, 2117–2140.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Lawler, Gregory. Subdiffusive fluctuations for internal diffusion limited aggregation.Ann. Probab.23 (1995), no. 1, 71–86.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Levine, Lionel. The Rotor-Router Model. Harvard University senior thesis. Preprint arXiv:math.CO/0409407 (September 2004).

  12. 12.

    Moore, Christopher; Machta, Jonathan. Internal diffusion-limited aggregation: parallel algorithms and complexity.J. Statist. Phys.99 (2000), no. 3-4, 661–690.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Witten, T. A.; Sander, L. M. Diffusion- limited aggregation.Phys. Rev. B (3)27 (1983), no. 9, 5686–5697.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Winkler, Peter.Mathematical Puzzles: A Connoisseur’s Collection. A K Peters Ltd, Natick, MA, 2003.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Kleber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kleber, M. Goldbug variations. The Mathematical Intelligencer 27, 55–63 (2005). https://doi.org/10.1007/BF02984814

Download citation

Keywords

  • Random Walk
  • Mathematical Intelligencer
  • Constant Error
  • Occupied Site
  • Evolution Rule