Alice in switzerland: The life and mathematics of alice roth

This is a preview of subscription content, log in to check access.

References

  1. [1]

    G. L. Alexanderson.The random walks of George Pólya. MAA Spectrum. Mathematical Association of America, Washington, DC, 2000.

    Google Scholar 

  2. [2]

    N. U. Arakelian. Uniform and asymptotic approximation by entire functions on unbounded closed sets (Russian).Dokl. Akad. Nauk SSSR, 157:9–11, 1964. English translation:Soviet Math. Dokl. 5, (1964), 849-851.

    MathSciNet  Google Scholar 

  3. [3]

    Bericht des eidgenössischen Polytechnikums über das Jahr 1870. Zürich, 1870. Archiv der ETH Zürich, P 92899 P.

  4. [4]

    E. Bishop. Boundary measures of analytic differentials.Duke Math. J., 27:331–340, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    T. Carleman. Sur un théorème de Weierstrass.Ark. Mat. Astr. och Fys., 20 B(4):1–5, 1927.

    Google Scholar 

  6. [6]

    R. B. Crittenden and L. G. Swanson. An elementary proof that the unit disc is a Swiss cheese.Amer. Math. Monthly, 83(7):552–554, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]

    Dissertationenverzeichnis 1909‖1971. Number 15 in Schriftenreihe der Bibliothek. Eidg. Techn. Hochschule, Zürich, 1972.

  8. [8]

    D. Gaier.Vorlesungen über Approximation im Komplexen. Birkhäuser Verlag, Basel, 1980. English translation: Lectures on Complex Approximation, Birkhäuser Verlag, Boston, 1987.

    Google Scholar 

  9. [9]

    T. W. Gamelin.Uniform Algebras. Prentice-Hall Inc., Englewood Cliffs, N. J., 1969.

    Google Scholar 

  10. [10]

    S. J. Gardiner.Harmonic approximation, volume 221 ofLondon Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  11. [11]

    P. M. Gauthier, A. Roth, and J. L. Walsh. Possibility of uniform rational approximation in the spherical metric.Canad. J. Math., 28(1):112–115, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  12. [12]

    M. Gosteli, editor.Vergessene Geschichte/Histoire oubliée.Illu- strierte Chronik der Frauenbewegung 1914–1963, volume 1 and 2. Stämpfli Verlag, Bern, 2000. Articles in German, French, or Italian.

  13. [13]

    G. H. Hardy.A Mathematician’s Apology. Canto. Cambridge University Press, Cambridge, 1992, Reprinted 1993.

    Google Scholar 

  14. [14]

    F. Hartogs and A. Rosenthal. Über Folgen analytischer Funktionen.Math. Ann., 104:606–610, 1931.

    Article  MathSciNet  Google Scholar 

  15. [15]

    H. Hopf. Korreferat über die Dissertation von Fräulein A. Roth: Ap- proximationseigenschaften und Strahlengrenzwerte meromorpher und ganzer Funktionen. ETH-Bibliothek Zürich, Hs 620:107, 9. VII. 1938.

  16. [16]

    75 Jahre Humboldtianum Bern: zum Geburtstag. Bern, 1979.

  17. [17]

    Jahresbericht der Höheren Töchterschuleder Stadt Zürich. Zürich, 1925/26-1927/28.

  18. [18]

    S. N. Mergelyan. On the representation of functions by series of polynomials on closed sets.Doklady Akad. Nauk SSSR (N.S.), 78:405–408, 1951. English translation:Amer. Math. Soc. Transla- tion 1953 (1953), no. 85, 8pp.

    MathSciNet  Google Scholar 

  19. [19]

    A. H. Nersessian. Uniform and tangential approximation by mero- morphic functions.Izv. Akad. Nauk Armyan. SSR Ser. Mat., VII:405–412, 1972. (Russian).

    Google Scholar 

  20. [20]

    G. Pólya and G. Szegö.Aufgaben und Lehrsätzeaus der Analysis. Springer-Verlag, 1925. 2 Bande.

  21. [21]

    Protokoll des Schweizerischen Schulrates für das Jahr 1938. Zürich, 1938. Archiv der ETH Zürich, SR 2.

  22. [22]

    A. Roth. Ausdehnung des Weierstrass’schen Approximations- satzes auf das komplexe Gebiet und auf ein unendliches Intervall. Diplomarbeit, ETH, Abteilung fur Fachlehrer in Mathematik u. Physik, Zürich, 9. November 1929.

  23. [23]

    A. Roth. Über die Ausdehnung des Approximationssatzes von Weierstrass auf das komplexe Gebiet.Verhandlungen der Schweizer. Naturforschenden Gesellschaft, page 304, 1932.

  24. [24]

    A. Roth.Approximationseigenschaften und Strahlengrenzwerte meromorpher und ganzer Funktionen. PhD thesis, Eidgenössische Technische Hochschule, Zürich, 1938. Separatdruck ausCom- ment. Math. Helv. 11, 1938, 77-125.

    Google Scholar 

  25. [25]

    A. Roth. Sur les limites radiais des fonctions entières (présentée par M. Paul Montel).Académie des Sciences, pages 479–481, 14 Février 1938.

    Google Scholar 

  26. [26]

    A. Roth. Meromorphe Approximationen.Comment. Math. Helv., 48:151–176, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  27. [27]

    A. Roth. Uniform and tangential approximations by meromorphic functions on closed sets.Canad. J. Math., 28(1): 104–111, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  28. [28]

    A. Roth. Uniform approximation by meromorphic functions on closed sets with continuous extension into the boundary.Canad. J. Math., 30(6): 1243–1255, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  29. [29]

    C. Runge. Zur Theorie der eindeutigen analytischen Funktionen.Acta Math., 6:229–244, 1885.

    Article  MATH  MathSciNet  Google Scholar 

  30. [30]

    700Jahre Töchterschuleder Stadt Zürich. Schulamt der Stadt Zürich, Zürich, 1975.

  31. [31]

    Verein Feministische Wissenschaft Schweiz.Ebenso neu als kühn,120 Jahre Frauenstudium an der Universität Zürich. eFeF-Verlag, Zürich, 1988.

  32. [32]

    A. G. Vitushkin. Uniform approximations by holomorphic functions.J. Functional Analysis, 20(2): 149–157, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  33. [33]

    J. L. Walsh. Über die Entwicklung einer Funktion einer komplexen Veränderlichen nach Polynomen.Math. Ann., 96:437–450, 1926.

    Article  MATH  Google Scholar 

  34. [34]

    L. Zalcman.Analytic Capacity and Rational Approximation. Lec- ture Notes in Mathematics, No. 50. Springer-Verlag, Berlin, 1968.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ulrich Daepp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daepp, U., Gauthier, P.M., Gorkin, P. et al. Alice in switzerland: The life and mathematics of alice roth. The Mathematical Intelligencer 27, 41–54 (2005). https://doi.org/10.1007/BF02984813

Download citation

Keywords

  • Entire Function
  • Meromorphic Function
  • Mathematical Intelligencer
  • Swiss Cheese
  • Tangential Approximation