Skip to main content
Log in

PET kinetic analysis—compartmental model

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

PET enables not only visualization of the distribution of radiotracer, but also has ability to quantify several biomedical functions. Compartmental model is a basic idea to analyze dynamic PET data. This review describes the principle of the compartmental model and categorizes the techniques and approaches for the compartmental model according to various aspects: model design, experimental design, invasiveness, and mathematical solution. We also discussed advanced applications of the compartmental analysis with PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luker G, Piwnica-Worms D. Molecular imagingin vivo with PET and SPECT.Acad Radiol November 2001; 8: 4–14.

    Article  CAS  Google Scholar 

  2. Dobrucki L, Sinusas A. Molecular imaging. A new approach to nuclear cardiology.Q J Nucl Med Mol Imaging 2005; 49(1): 106–115.

    PubMed  CAS  Google Scholar 

  3. Weissleder R. Molecular imaging in cancer.Science 2006; 312(5777): 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  4. Kety S. The theory and applications of the exchange of inert gas at the lungs and tissues.Pharmacol Rev 1951; 3: 3–41.

    Google Scholar 

  5. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man.Circ Res 1979; 44(1): 127–137.

    PubMed  CAS  Google Scholar 

  6. Mintun M, Raichle M, Martin W, Herscovitch P. Brain oxygen utilization measured with O–15 radiotracers and positron emission tomography.J Nucl Med 1984; 25(2): 177–187.

    PubMed  CAS  Google Scholar 

  7. Mintun M, Raichle M, Kilbourn M, Wooten G, Welch M. A quantitative model for thein vivo assessment of drug binding sites with positron emission tomography.Ann Neurol 1984; 15(3): 217–227.

    Article  PubMed  CAS  Google Scholar 

  8. Eriksson L, Holte S, Bohm C, Kesselberg M, Hovander B. Automated blood sampling systems for positron emission tomography.IEEE Nucl Sci 1988; 35(1): 703–707.

    Article  Google Scholar 

  9. Kudomi N, Choi E, Yamamoto S, Watabe H, Kim K, Shidahara M, et al. Development of a GSO detector assembly for a continuous blood sampling system.IEEE Trans Nucl Sci 2003; 50(1): 70–73.

    Article  CAS  Google Scholar 

  10. Koeppe R, Holthoff V, Frey K, Kilbourn M, Kuhl D. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.J Cereb Blood Flow Metab 1991; 11(5): 735–744.

    PubMed  CAS  Google Scholar 

  11. Watabe H, Channing M, Der M, Adams H, Jagoda E, Herscovitch P, et al. Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907.J Cereb Blood Flow Metab 2000; 20(6): 899–909.

    Article  PubMed  CAS  Google Scholar 

  12. Endres C, Endres C, DeJesus O, DeJesus O, Uno H, Uno H, et al. Time profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic l-DOPA.Front Biosci 2004; 9: 505–512.

    Article  PubMed  CAS  Google Scholar 

  13. Patlak C, Blasberg R. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metab 1985; 5(4): 584–590.

    PubMed  CAS  Google Scholar 

  14. Logan J, Fowler J, Volkow N, Wolf A, Dewey S, Schlyer D, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied toN-[11C]methyl-(-)-cocaine PET studies in human subjects.J Cereb Blood Flow Metab 1990; 10(5): 740–747.

    PubMed  CAS  Google Scholar 

  15. Cunningham V, Jones T. Spectral analysis of dynamic PET studies.J Cereb Blood Flow Metab 1993; 13(1): 15–23.

    PubMed  CAS  Google Scholar 

  16. Murase K. Spectral analysis: principle and clinical applications.Ann Nucl Med 2003; 17(6): 427–434.

    PubMed  Google Scholar 

  17. Gunn R, Gunn S, Turkheimer F, Aston J, Cunningham V. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling.J Cereb Blood Flow Metab 2002; 22(12): 1425–1439.

    Article  PubMed  CAS  Google Scholar 

  18. Lammertsma A, Jones T, Frackowiak R, Lenzi G. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15.J Comput Assist Tomogr 1981; 5(4): 544–550.

    Article  PubMed  CAS  Google Scholar 

  19. Carson R, Channing M, Blasberg R, Dunn B, Cohen R, Rice K, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography.J Cereb Blood Flow Metab 1993; 13(1): 24–42.

    PubMed  CAS  Google Scholar 

  20. Watabe H, Endres C, Breier A, Schmall B, Eckelman W, Carson R. Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations.J Nucl Med 2000; 41(3): 522–530.

    PubMed  CAS  Google Scholar 

  21. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect.Circulation 1988; 78(1): 104–115.

    PubMed  CAS  Google Scholar 

  22. Choi Y, Huang S, Hawkins R, Kim J, Kim B, Hoh C, et al. Quantification of myocardial blood flow using13N-ammonia and PET: comparison of tracer models.J Nucl Med 1999; 40(6): 1045–1055.

    PubMed  CAS  Google Scholar 

  23. Watabe H, Channing M, Riddell C, Jousse F, Libutti S, Carrasquillo J, et al. Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [15O]water.IEEE Trans Med Imaging 2001; 20(3): 164–174.

    Article  PubMed  CAS  Google Scholar 

  24. Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.IEEE Trans Biomed Eng 2005; 52(2): 201–210.

    Article  PubMed  Google Scholar 

  25. Watabe H, Itoh M, Cunningham V, Lammertsma A, Bloomfield P, Mejia M, et al. Noninvasive quantification of rCBF using positron emission tomography.J Cereb Blood Flow Metab 1996; 16(2): 311–319.

    Article  PubMed  CAS  Google Scholar 

  26. Bella ED, Clackdoyle R, Gullberg G. Blind estimation of compartmental model parameters.Phys Med Biol 1999; 44(3): 765–780.

    Article  PubMed  Google Scholar 

  27. Lammertsma A, Bench C, Hume S, Osman S, Gunn K, Brooks D, et al. Comparison of methods for analysis of clinical [11C]raclopride studies.J Cereb Blood Flow Metab 1996; 16(1): 42–52.

    Article  PubMed  CAS  Google Scholar 

  28. Lammertsma A, Hume S. Simplified reference tissue model for PET receptor studies.Neuroimage 1996; 4 (3 Pt 1): 153–158.

    Article  PubMed  CAS  Google Scholar 

  29. Endres C, Bencherif B, Hilton J, Madar I, Frost J. Quantification of brain muopioid receptors with [11C]carfentanil: reference-tissue methods.Nucl Med Biol 2003; 30(2): 177–186.

    Article  PubMed  CAS  Google Scholar 

  30. Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, Berckel BNMV, Lammertsma AA. Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies.J Cereb Blood Flow Metab 2006.

  31. Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET.J Nucl Med 1993; 34(3): 498–505.

    PubMed  CAS  Google Scholar 

  32. Ichise M, Toyama H, Innis R, Carson R. Strategies to improve neuroreceptor parameter estimation by linear regression analysis.J Cereb Blood Flow Metab 2002; 22(10):1271–1281.

    Article  PubMed  Google Scholar 

  33. Slifstein M, Lamelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies.J Nucl Med 2000; 41(12): 2083–2088.

    PubMed  CAS  Google Scholar 

  34. Gunn R, Lammertsma A, Hume S, Cunningham V. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.Neuroimage 1997; 6(4):279–287.

    Article  PubMed  CAS  Google Scholar 

  35. Watabe H, Watabe H, Jino H, Jino H, Kawachi N, Kawachi N, et al. Parametric imaging of myocardial blood flow with15O-water and PET using the basis function method.J Nucl Med 2005; 46(7): 1219–1224.

    PubMed  Google Scholar 

  36. Breier A, Su T, Saunders R, Carson R, Kolachana B, Bartolomeis de A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.Proc Natl Acad Sci USA 1997; 94(6): 2569–2574.

    Article  PubMed  CAS  Google Scholar 

  37. Endres C, Kolachana B, Saunders R, Su T, Weinberger D, Breier A, et al. Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies.J Cereb Blood Flow Metab 1997; 17(9): 932–942.

    Article  PubMed  CAS  Google Scholar 

  38. Koeppe R, Raffel D, Snyder S, Ficaro E, Kilboum M, Kuhl D. Dual-[11C]tracer single-acquisition positron emission tomography studies.J Cereb Blood Flow Metab 2001; 21 (12): 1480–1492.

    Article  PubMed  CAS  Google Scholar 

  39. Kudomi N, Hayashi T, Teramoto N, Watabe H, Kawachi N, Ohta Y, et al. Rapid quantitative measurement of CMRO2 and CBF by dual administration of15O-labeled oxygen and water during a single PET scan—a validation study and error analysis in anesthetized monkeys.J Cereb Blood Flow Metab 2005; 25: 1209–1224.

    Article  PubMed  Google Scholar 

  40. Green L, Nguyen K, Berenji B, Iyer M, Bauer E, Barrio J, et al. A tracer kinetic model for18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET.J Nucl Med 2004; 45(9): 1560–1570.

    PubMed  CAS  Google Scholar 

  41. Richard J, Zhou Z, Chen D, Mintun M, Piwnica-Worms D, Factor P, et al. Quantitation of pulmonary transgene expression with PET imaging.J Nucl Med 2004; 45(4): 644–654.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Watabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watabe, H., Ikoma, Y., Kimura, Y. et al. PET kinetic analysis—compartmental model. Ann Nucl Med 20, 583–588 (2006). https://doi.org/10.1007/BF02984655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984655

Key words

Navigation