Advertisement

International Journal of Hematology

, Volume 78, Issue 5, pp 432–438 | Cite as

Molecular Cytogenetic Analyses of HIG, a Novel Human Cell Line Carrying t(1;3)(p36.3;q25.3) Established from a Patient with Chronic Myelogenous Leukemia in Blastic Crisis

  • Noriko Hosoya
  • Seishi Ogawa
  • Tohru Motokura
  • Akira Hangaishi
  • Lili Wang
  • Ying Qiao
  • Yasuhito Nannya
  • Mieko Kogi
  • Hisamaru Hirai
Progress in hematology

Abstract

Chromosomal abnormalities involving 1p36, 3q21, and/or 3q26 have been reported in a subset of myeloid neoplasms having characteristic dysmegakaryopoiesis, and the overexpression ofEVI1 on 3q26 or ofMEL1 on 1p36 has been implicated in their pathogenesis. We describe molecular cytogenetic analyses of a novel human cell line, HIG, established from a unique case in which a novel translocation t(1;3)(p36;q26) appeared as the sole additional chromosomal abnormality at the time of blastic transformation of chronic myelogenous leukemia. The patient displayed clinical features resembling those of the 3q21q26 syndrome. The HIG cell line retained der(1)t(1;3)(p36;q26) but lost t(9;22)(q34;q11). To identify the relevant gene that would be deregulated by this translocation, we molecularly cloned the translocation’s breakpoints. They were distant from the breakpoint cluster regions of the 3q21q26 syndrome or t(1;3)(p36;q21), and neither theEVI1 nor theMEL1 transcript was detected in the HIG cell line. None of the genes located within 150 kilobase pairs of the breakpoints were aberrantly expressed, suggesting that in this case other gene(s) more distant from the breakpoints are deregulated by possible remote effects. Further analyses of the deregulated genes in the HIG cell line should provide important insight into the mechanisms involved in these types of leukemias.

Key words

Chromosomal translocation Leukemia t(1:3)(p36:q26) 3q21q26 Syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitelman F, Mertens F, Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia.Nat Genet. 1997;15:417–474.CrossRefGoogle Scholar
  2. 2.
    Koeffler HP. Syndromes of acute nonlymphocytic leukemia.Ann Int Med. 1987;107:748–758.CrossRefGoogle Scholar
  3. 3.
    Suzukawa K, Parganas E, Gajjar A, et al. Identification of a breakpoint cluster region 3’ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26).Blood. 1994;84:2681–2688.Google Scholar
  4. 4.
    Testoni N, Borsaru G, Martinelli G, et al. 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features.Haematologica. 1999;84:690–694.Google Scholar
  5. 5.
    Fichelson S, Dreyfus F, Berger R, et al. Evi-1 expression in leukemic patients with rearrangements of the 3q25-q28 chromosomal region.Leukemia. 1992;6:93–99.Google Scholar
  6. 6.
    Morishita K, Parganas E, Willman CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26.Proc Natl Acad Sci USA. 1992;89:3937–3941.CrossRefPubMedGoogle Scholar
  7. 7.
    Levy ER, Parganas E, Morishita K, et al. DNA rearrangements proximal to the EVI1 locus associated with the 3q21q26 syndrome.Blood. 1994;83:1348–1354.Google Scholar
  8. 8.
    Suzukawa K, Taki T, Abe T, et al. Identification of translocational breakpoints within the intron region before the last coding exon (exon 12) of the EVI1 gene in two cases of CML-BC with inv(3) (q21q26).Genomics. 1997;42:356–360.CrossRefGoogle Scholar
  9. 9.
    Mochizuki N, Shimizu S, Nagasawa T, et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells.Blood. 2000;96:3209–3214.Google Scholar
  10. 10.
    Bloomfield CD, Garson OM, Volin L, Knuutila S, de la Chapelle A. t(1;3)(p36;q21) in acute nonlymphocytic leukemia: a new cytoge- netic-clinicopathologic association.Blood. 1985;66:1409–1413.Google Scholar
  11. 11.
    Welborn JL, Lewis JP, Jenks H, Walling P. Diagnostic and prognostic significance of t(1;3)(p36;q21) in the disorders of hematopoiesis.Cancer Genet Cytogenet. 1987;28:277–285.CrossRefGoogle Scholar
  12. 12.
    Shimizu S, Suzukawa K, Kodera T, et al. Identification of breakpoint cluster regions at 1p36.3 and 3q21 in hematologic malignancies with t(1;3)(p36;q21).Genes Chromosomes Cancer. 2000;27:229–238.CrossRefGoogle Scholar
  13. 13.
    Eils R, Uhrig S, Saracoglu K, et al. An optimized, fully automated system for fast and accurate identification of chromosomal rearrangements by multiplex-FISH (M-FISH).Cytogenet Cell Genet. 1998;82:160–171.CrossRefGoogle Scholar
  14. 14.
    Qiao Y, Ogawa S, Hangaishi A, et al. Identification of a novel fusion gene, TTL, fused to ETV6 in acute lymphoblastic leukemia with t(12;13)(p13;q14), and its implication in leukemogenesis.Leukemia. 2003;17:1112–1120.CrossRefGoogle Scholar
  15. 15.
    Ogawa S, Kurokawa M, Tanaka T, et al. Structurally altered Evi-1 protein generated in the 3q21q26 syndrome.Oncogene. 1996;13:183–191.Google Scholar
  16. 16.
    Blaschke RJ, Monaghan AP, Schiller S, et al. SHOT, a SHOX-related homeobox gene, is implicated in craniofacial, brain, heart, and limb development.Proc NatlAcad Sci USA. 1998;95:2406–2411.CrossRefGoogle Scholar
  17. 17.
    Willis TG, Jadayel DM, Coijnet LJA, et al. Rapid molecular cloning of rearrangements of the IGHJ locus using long-distance inverse polymerase chain reaction.Blood. 1997;90:2456–2464.Google Scholar
  18. 18.
    Kawasaki ES, Clark SS, Coyne MY, et al. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro.Proc Natl Acad Sci USA. 1988;85:5698–5702.CrossRefPubMedGoogle Scholar
  19. 19.
    Zoccola D, Legros L, Cassuto P, Fuzibet JG, Nucifora G, Ray-naud SD. A discriminating screening is necessary to ascertain EVI1 expression by RT-PCR in malignant cells from the myeloid lineage without 3q26 rearrangement.Leukemia. 2003;17:643–645.CrossRefGoogle Scholar
  20. 20.
    De Baere E, Speleman F, Van Roy N, De Paepe A, Messiaen L. Assignment of SHOX2 (alias OG12X and SHOT) to human chromosome bands 3q25 →q26.1 by in situ hybridization.Cytogenet Cell Genet. 1998;82:228–229.CrossRefGoogle Scholar
  21. 21.
    Semina EV, Reiter RS, Murray JC. A new human homeobox gene OGI2X is a member of the most conserved homeobox gene family and is expressed during heart development in mouse.Hum Mol Genet. 1998;7:415–422.CrossRefGoogle Scholar
  22. 22.
    Cory S, Graham M, Webb E, Corcoran L, Adams JM. Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene.EMBO J. 1985;4:675–681.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Graham M, Adams JM. Chromosome 8 breakpoint far 3’ of the c-myc oncogene in a Burkitt’s lymphoma 2;8 variant translocation is equivalent to the murine pvt-1 locus.EMBO J. 1986;5:2845–2851.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Henglein B, Synovzik H, Groitl P, Bornkamm GW, Hartl P, Lipp M. Three breakpoints of variant t(2;8) translocations in Burkitt’s lymphoma cells fall within a region 140 kilobases distal from c-myc.Mol Cell Biol.1989;9:2105–2113.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2003

Authors and Affiliations

  • Noriko Hosoya
    • 1
  • Seishi Ogawa
    • 1
  • Tohru Motokura
    • 1
  • Akira Hangaishi
    • 1
  • Lili Wang
    • 1
  • Ying Qiao
    • 1
  • Yasuhito Nannya
    • 1
  • Mieko Kogi
    • 2
  • Hisamaru Hirai
    • 1
  1. 1.Department of Hematology and OncologyGraduate School of Medicine, University of TokyoTokyoJapan
  2. 2.Hematologic Research CenterBML Tokyo Assay Laboratories Co, LtdTokyoJapan

Personalised recommendations