International Journal of Hematology

, Volume 78, Issue 5, pp 421–428 | Cite as

The Signaling Pathways of Erythropoietin and Interferon-γ Differ in Preventing the Apoptosis of Mature Erythroid Progenitor Cells

  • Kittiphong Paiboonsukwong
  • Ilseung Choi
  • Takamitsu Matsushima
  • Yasunobu Abe
  • Junji Nishimura
  • Pranee Winichagoon
  • Suthat Fucharoen
  • Hajime Nawata
  • Koichiro Muta
Progress in hematology


Interferon (IFN)-γ is a survival factor for mature erythroid progenitor cells. To elucidate related survival mechanisms, we compared the role of phosphatidylinositol 3-kinase (PI3-kinase) in the survival signals of IFN-γ and erythropoietin (EPO). Human erythroid colony-forming cells (ECFCs) purified from peripheral blood were used, and Ly294002 was used as a PI3-kinase inhibitor. Treating ECFCs with a high concentration of Ly294002 (50 µmol/L) in the presence of EPO and/or IFN-γ reduced cell viability by inducing apoptosis. However, treating cells with a lower concentration of Ly294002 (10 µmol/L) did not affect the antiapoptotic function of IFN-γ and abolished the antiapoptotic effect of EPO. Adding IFN-γ or EPO induced Bcl-x expression in ECFCs, as determined by Western blotting, and expression was suppressed in the presence of Ly294002. We also examined the phosphorylation of the protein kinase Akt, the downstream target of PI3-kinase. EPO stimulation significantly increased the level of Akt phosphorylation, but IFN-γ did not. These results suggest that IFN-γ plays a role in preventing the apoptosis of erythroid progenitor cells by affecting Bcl-x expression, thereby reducing the disruption of the mitochondrial transmembrane potential via PI3-kinase pathways that are related to but distinct from the EPO pathway.

Key words

Erythroid progenitor cells IFN-γ Apoptosis PI3-kinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krantz SB. Erythropoietin.Blood. 1991;77:419–434.PubMedGoogle Scholar
  2. 2.
    Sawyer ST, Krantz SB, Goldwasser E. Binding and receptor-mediated erythropoietin in Friend virus-infected erythroid.J Biol Chem. 1987;262:5554–5562.PubMedGoogle Scholar
  3. 3.
    Miura O, Nakamura N, Quelle FW, Witthuhn BA, Ihle JN, Aoki N. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo.Blood. 1994;84:1501–1507.PubMedGoogle Scholar
  4. 4.
    Penta K, Sawyer ST. Erythropoietin induces the tyrosine phosphorylation, nuclear translocation, and DNA binding of STAT1 and STAT5 in erythroid cells.J Biol Chem. 1995;270:31282–31287.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Damen JE, Liu L, Cutler RL, Krystal G. Erythropoietin stimulates the tyrosine phosphorylation of Shc and its association with Grb2 and a 145-Kd tyrosine phosphorylated protein.Blood. 1993;82:2296–2303.PubMedGoogle Scholar
  6. 6.
    Damen JE, Liu L, Rosten P, et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-triphosphatase.ProcNatl Acad Sci USA. 1996;93:1689–1693.CrossRefGoogle Scholar
  7. 7.
    Nagata Y, Nishida E, Todokoro K. Activation of JNK signaling pathway by erythropoietin, thrombopoietin, and interleukin-3.Blood. 1997;89:2664–2669.PubMedGoogle Scholar
  8. 7.
    Miura Y, Miura O, Ihle JN, Aoki N. Activation of the mitogen-activated protein kinase pathway by erythropoietin receptor. J Biol Chem. 1994;vn269:29962—29969.PubMedGoogle Scholar
  9. 9.
    Nagata Y, Moriguchi T, Nishida E, Todokoro K. Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3.Blood. 1997;90:929–934.PubMedGoogle Scholar
  10. 10.
    Mayeux P, Dusanter-Fourt I, Muller O, et al. Erythropoietin induces the association of phosphatidylinositol 3’-kinase with a tyrosine-phosphorylated protein complex containing the erythropoietin receptor.Eur J Biochem. 1993;216:821–828.CrossRefPubMedGoogle Scholar
  11. 11.
    Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation.Biochem J. 1998;335:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis.Genes Dev. 1999;13:1899–1911.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichilis PN.Trans- duction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase.Proc NatlAcad Sci USA. 1997;94:3627–3632.CrossRefGoogle Scholar
  14. 14.
    Stein RC, Waterfield MD. PI3-kinase inhibition: a target for drug development?Mol Med Today. 2000;6:347–357.CrossRefPubMedGoogle Scholar
  15. 15.
    Sen GC, Lengyel P. The interferon system: a bird’s eye view of its biochemistry.J Biol Chem. 1992;267:5017–5020.PubMedGoogle Scholar
  16. 16.
    Dai C, Krantz SB. Interferon gamma induces upregulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells.Blood. 1999;93:3309–3316.PubMedGoogle Scholar
  17. 17.
    Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+ human marrow cells is induced by interferonγ and tumor necrosis factorα and potentiates cytokine-mediated hematopoietic suppression in vitro.Blood. 1995;85:3183–3190.PubMedGoogle Scholar
  18. 18.
    Tsushima H, Imaizumi Y, Imanishi D, Fuchigami,Tomonaga M. Fas antigen (CD95) in pure erythroid cell line AS-E2 is induced by interferon-γ and tumor necrosis factor-α and potentiates apoptotic death.Exp Hematol. 1999;27:433–440.CrossRefPubMedGoogle Scholar
  19. 19.
    Dai CH, Price JO, Brunner T, Krantz SB. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon -y to produce erythroid cell apoptosis.Blood. 1998;91:1235–1242.PubMedGoogle Scholar
  20. 20.
    Choi I, Muta K, Wickrema A, Krantz SB, Nishimura J, Nawata H. Interferon gamma delays apoptosis of mature erythroid progenitor cells in the absence of erythropoietin.Blood. 2000;95:3742–3749.PubMedGoogle Scholar
  21. 21.
    Muta K, Krantz SB, Bondurant MC, Wickrema A. Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells.J Clin Invest. 1994; 94:34–43.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Muta K, Krantz SB. Apoptosis of human erythroid colony-forming cells is decreased by stem cell factor and insulin-like growth factor I as well as erythropoietin.J Cell Physiol. 1993;156:264–271.CrossRefPubMedGoogle Scholar
  23. 23.
    Uddin S, Kottegoda S, Stigger D, Platanias LC, Wickrema A. Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors.Biochem Biophys Res Commun. 2000;275:16–19.CrossRefPubMedGoogle Scholar
  24. 24.
    Haseyama Y, Sawada K, Oda A, et al. Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis.Blood. 1999;94:1568–1577.PubMedGoogle Scholar
  25. 25.
    Sui X, Krantz SB, Zhao ZJ. Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways.Br J Haematol. 2000;110:63–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1- benzopyran-4-one (LY294002).J Biol Chem. 1994;269:5241–5248.PubMedGoogle Scholar
  27. 27.
    Woscholski R, Kodaki T, McKinnon M, Waterfield MD, Parker PJ. A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase.FEBS Lett. 1994;342:109–114.CrossRefPubMedGoogle Scholar
  28. 28.
    Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF. Interleukin 3-dependent survival by the Akt protein kinase.Proc NatlAcad Sci USA. 1997;94:11345–11350.CrossRefGoogle Scholar
  29. 29.
    Scheid MP, Duronio V. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation.Proc Natl Acad Sci USA. 1998; 95:7439–7444.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yao R, Cooper GM. Requirement of phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor.Science. 1995;267:2003–2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt.Science. 1997;275:661–665.CrossRefPubMedGoogle Scholar
  32. 32.
    Coffer PJ, Schweizer RC, Dubois GR, Maikoe T, Lammers JWJ, Koendermann L. Analysis of signal transduction pathways in human eosinophils activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and interleukin-5.Blood. 1998;91:2547–2557.PubMedGoogle Scholar
  33. 33.
    Kennedy SG,Wagner AJ, Conzen SD, et al. The PI3-kinase/Akt signaling pathway delivers an anti-apoptotic signal.Genes Dev. 1997; 11:701–713.CrossRefPubMedGoogle Scholar
  34. 34.
    Mignotte B, Vayssiere JL. Mitochondria and apoptosis.Eur J Biochem. 1998;252:1–15.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee AH, Hong JH, Seo YS. Tumour necrosis factor-α and interferon-γ synergistically activate the RANTES promoter through nuclear factor kB and the interferon regulatory factor 1 (IRF-1) transcription factors.Biochem J. 2000;350:131–138.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2003

Authors and Affiliations

  • Kittiphong Paiboonsukwong
    • 1
    • 4
  • Ilseung Choi
    • 1
  • Takamitsu Matsushima
    • 1
  • Yasunobu Abe
    • 1
  • Junji Nishimura
    • 2
  • Pranee Winichagoon
    • 3
  • Suthat Fucharoen
    • 3
  • Hajime Nawata
    • 1
  • Koichiro Muta
    • 1
  1. 1.Department of Medicine and Bioregulatory ScienceGraduate School of Medical Science, Kyushu UniversityFukuokaJapan
  2. 2.Division of Clinical Immunology, Department of Immunobiology and NeuroscienceMedical Institute of Bioregulation, Kyushu UniversityBeppuJapan
  3. 3.Thalassemia Research CenterInstitute of Science and Technology for Research and Development, Mahidol UniversityNakhonpathomThailand
  4. 4.Field of Molecular Genetics and Genetic EngineeringInstitute of Molecular Biology and Genetics, Mahidol UniversityNakhonpathom, Thailand

Personalised recommendations