International Journal of Hematology

, Volume 78, Issue 3, pp 233–240 | Cite as

Effects of the Tyrosine Kinase Inhibitor Imatinib Mesylate on a Bcr-Abl-Positive Cell Line: Suppression of Autonomous Cell Growth but No Effect on Decreased Adhesive Property and Morphological Changes

  • Toshio Nishihara
  • Yasuo Miura
  • Yumi Tohyama
  • Chisato Mizutani
  • Terutoshi Hishita
  • Satoshi Ichiyama
  • Takashi Uchiyama
  • Kaoru Tohyama
Progress in Hematology


Expression of the Bcr-Abl oncoprotein alters various aspects of hematopoietic cells. We investigated the effects of a Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate, on the proliferation, adhesive properties, and morphology of a Bcr-Abl-transferred cell line, TF-1 Bcr-Abl, in comparison with parental TF-1. First, the factor-independent growth of TF-1 Bcr-Abl was inhibited in the presence of imatinib mesylate, but this inhibition was overcome by addition of exogenous granulocyte-macrophage colony-stimulating factor. Imatinib mesylate remarkably reduced tyrosine phosphorylation of Bcr-Abl, Cbl, and Crkl in a time-dependent manner, and their complex formation also was affected. Imatinib mesylate inhibited activation of Stat5 rather than the MEK-ERK1/2 pathway. TF-1 Bcr-Abl cells exhibited a round shape, unlike TF-1, and the adhesive property to fibronectin was much lower than that of TF-1. Although the Bcr-Abl oncoprotein may be involved negatively in cell adhesion, the decreased adhesion and altered morphology of TF-1 Bcr-Abl cells were minimally affected by imatinib mesylate and seemed independent of Bcr-Abl kinase activity. The present data indicated that the Bcr-Abl-specific kinase inhibitor cannot control Bcr-Abl-induced cell alterations other than autonomous growth.Int J Hematol. 2003;78:233-240.

Key words

Bcr-Abl Autonomous growth Tyrosine kinase inhibitor Cell adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signaling pathway.EMBO J. 1994;13:764–773.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mandans RA, Leibowitz DS, Gharehbaghi K, et al. Role of p21 ras in p210 bcr-abl transformation of murine myeloid cells.Blood. 1993;82:1838–1847.Google Scholar
  3. 3.
    Skorski T, Skorska NS, Szczylik C, et al. c-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hemato- poiesis.Cancer Res. 1995;55:2275–2278.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Iralia RLJ, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.J Biol Chem. 1996;271:31704–31710.CrossRefGoogle Scholar
  5. 5.
    Sattler M, Griffin JD. Mechanisms of transformation by the BCR/ ABL oncogene.Int J Hematol. 2001;73:278–291.CrossRefPubMedGoogle Scholar
  6. 6.
    Maru Y. Molecular biology of chronic myeloid leukemia.Int J Hematol. 2001;73:308–322.CrossRefPubMedGoogle Scholar
  7. 7.
    Ratiano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation.Proc Natl Acad Sci USA. 1995;92:11746–11750.CrossRefGoogle Scholar
  8. 8.
    Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol- 3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells.Blood. 1995;86:726–736.PubMedGoogle Scholar
  9. 9.
    ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia.Blood. 1994;84:1731–1736.Google Scholar
  10. 10.
    Bhat A, Kolibaba K, Oda T, Ohno-Jones S, Heaney C, Druker BJ. Interactions of CBL with BCR-ABL and CRKL in BCR-ABL- transformed myeloid cells.J Biol Chem. 1997;272:16170–16175.CrossRefPubMedGoogle Scholar
  11. 11.
    ten Hoeve J, Kaartinen V, Fioretos T, et al. Cellular interactions of CRKL, and SH2-SH3 adaptor protein.Cancer Res. 1994;54:2563–2567.Google Scholar
  12. 12.
    Uemura N, Salgia R, Li JL, Pisick E, Sattler M, Griffin JD. The BCR/ ABL oncogene alters interaction of the adaptor proteins CRKL and CRK with cellular proteins.Leukemia. 1997;11:376–385.CrossRefPubMedGoogle Scholar
  13. 13.
    Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell. 1993;75:175–185.CrossRefPubMedGoogle Scholar
  14. 14.
    Cortez D, Reuther G, Pendergast AM. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells.Oncogene. 1997;15:2333–2342.CrossRefPubMedGoogle Scholar
  15. 15.
    Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia.Blood. 1994;83:2038–2044.PubMedGoogle Scholar
  16. 16.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukemia.Nature. 1987;328:342–344.CrossRefPubMedGoogle Scholar
  17. 17.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with Philadelphia chromosome.N Engl J Med. 2001;344:1038–1042.CrossRefPubMedGoogle Scholar
  18. 18.
    Tauchi T, Ohyashiki K, Yamashita Y, Sugimoto S, Toyama K. SH2- containing phospho-tyrosine phosphatase SHP-1 is involved in BCR-ABL signal transduction pathways.Int J Oncol. 1997;11:471–476.PubMedGoogle Scholar
  19. 19.
    Thiesing JT, Jones SO, Kolibaba KS, Drucer BJ. Efficacy of STI571, an Abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents Bcr-Abl-positive cells.Blood. 2000;96:3195–3199.PubMedGoogle Scholar
  20. 20.
    Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by chronic myelogenous leukemia-specific p210bcr/abl protein.Proc Natl Acad Sci USA. 1988;85:9312–9316.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carpino N, Wisniewski D, Strife A, et al. p62DOK: a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells.Cell. 1997;88:197–204.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsuguchi T, Salgia R, Hallek M, et al. Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony- stimulating factor and is constitutively increased by p210BCR/ABL.J Biol Chem. 1994;269:5016–5021.PubMedGoogle Scholar
  23. 23.
    Salgia R, Li JL, Lo SH, et al. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL.J Biol Chem. 1995;270:5039–5047.CrossRefPubMedGoogle Scholar
  24. 24.
    Gotoh A, Miyazawa K, Ohyashiki K, et al. Tyrosine phosphorylation and activation of focal adhesion kinase (p125FAK) by BCR- ABL oncoprotein.Exp Hematol. 1995;23:1153–1159.PubMedGoogle Scholar
  25. 25.
    Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated-protein in neutrophils from patients with chronic myelogenous leukemia.J Biol Chem. 1994;269:22925–22928.PubMedGoogle Scholar
  26. 26.
    Sattler M, Salgia R, Shrikhande G, et al. Steel factor induces tyrosine phosphorylation of Crkl and binding of Crkl to a complex containing c-kit, phosphatidyl-inositol 3-kinase, and p120Cbl.J Biol Chem. 1997;272:10248–10253.CrossRefPubMedGoogle Scholar
  27. 27.
    Sattler M, Salgia R, Shrikhande G, et al. Differential signaling after beta-1 integrin ligation is mediated through binding of Crkl to p120CBL and p110HEF1.J Biol Chem. 1997;272:14320–14326.CrossRefPubMedGoogle Scholar
  28. 28.
    Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated RAP1.Science. 1997;287:124–128.CrossRefGoogle Scholar
  29. 29.
    Verfaillie CM, Hurley R, Zhao RC, Prosper F, Delforge M, Bhatia R. Pathophysiology of CML: do defects in integrin function contribute to the premature circulation and massive expansion of the BCR/ABL positive clone?J Lab Clin Med. 1997;129:584–591.CrossRefPubMedGoogle Scholar
  30. 30.
    Andoniou CE, Thien CB, Langdon WY. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene.EMBO J. 1994;13:4515–4523.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Salgia R, Pisick E, Sattler M, et al. p130CAS forms a signaling complex with the adaptor protein CRKL in hematopoietic cells.J Biol Chem. 1996;271:25198–25203.CrossRefPubMedGoogle Scholar
  32. 32.
    Heaney C, Kolibaba K, Bhat A, et al. Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation.Blood. 1997;89:297–306.PubMedGoogle Scholar
  33. 33.
    de Jong R, ten Hoeve J, Heisterkamp N, Groffen J. CRKL is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia.J Biol Chem. 1995;270:21468–21471.CrossRefPubMedGoogle Scholar
  34. 34.
    Hurley RW, McCathy JB, Verfaillie CM. Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation.J Clin Invest. 1995;96:511–519.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kramer A, Horner S, Willer A, et al. Adhesion to fibronectin stimulates proliferation of wild-type and bcr/abl-transfected murine hematopoietic cells.Proc Natl Acad Sci USA. 1999;96:2087–2092.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© 2003 The Japanese Society of Hematology 2003

Authors and Affiliations

  • Toshio Nishihara
    • 1
  • Yasuo Miura
    • 1
  • Yumi Tohyama
    • 1
  • Chisato Mizutani
    • 1
  • Terutoshi Hishita
    • 1
  • Satoshi Ichiyama
    • 2
  • Takashi Uchiyama
    • 1
  • Kaoru Tohyama
    • 2
  1. 1.Department of Hematology and OncologyKyoto UniversityKyotoJapan
  2. 2.Department of Laboratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations