Human T-Lymphotropic Virus Type 1 (HTLV-1): Persistence and Immune Control

Abstract

The human retrovirus human T-lymphotropic virus type 1 (HTLV-1) is associated with two distinct types of disease: the malignancy known as adult T-cell leukemia and a range of chronic inflammatory conditions including the central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Until recently, it was believed that HTLV-1 was largely latent in vivo. However, evidence from a number of types of experiments shows that HTLV-1 persistently expresses its genes, and that the “set point” of an individual’s proviral load of HTLV-1 is mainly determined by the efficiency of that individual’s cellular immune response to the virus.These conclusions have two main consequences. First, HTLV-1 may be vulnerable to antiretroviral drug therapy or immunotherapy. Second, HTLV-1 infection has become a useful system to analyze the determinants of the efficiency of the antiviral immune response. Society of Hematology

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Green PL, Chen ISY. Human T lymphotropic viruses types 1 and 2. In Knipe, DM, Howley PM, eds,Fields Virology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2001:1941–1969.

    Google Scholar 

  2. 2.

    Hollsberg P. Mechanisms of T-cell activation by human T-cell lymphotropic virus type I.Microbiol Mol Biol Rev. 1999;63:308–333.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Yoshida M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control.Annu Rev Immunol. 2001;19:475–496.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Johnson JM, Harrod R, Franchini G. Molecular biology and pathogenesis of the human T-cell leukaemia/lymphotropic virus Type-1 (HTLV-1).Int J Exp Pathol. 2001;82:135–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Albrecht B, Lairmore MD. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis.Microbiol Mol Biol Rev. 2002;66:396–406, Table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Uchiyama T. Human T cell leukemia virus type I (HTLV-I) and human diseases.Annu Rev Immunol. 1997;15:15–37.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Watanabe T. HTLV-1-associated diseases.Int J Hematol. 1997;66:257–278.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Gessain A, Barin F, Vernant JC, et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis.Lancet. 1985;2:407–410.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Osame M, Usuku K, Izumo S, et al. HTLV-I associated myelopathy, a new clinical entity.Lancet. 1986;1:1031–1032.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Nakagawa M, Izumo S, Ijichi S, et al. HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings.J Neurovirol. 1995;1:50–61.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Mochizuki M, Watanabe T, Yamaguchi K, et al. Uveitis associated with human T lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies.J Infect Dis. 1992;166:943–944.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Morgan OS, Rodgers-Johnson P, Mora C, Char G. HTLV-1 and polymyositis in Jamaica.Lancet. 1989;2:1184–1187.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    LaGrenade L, Hanchard B, Fletcher V, Cranston B, Blattner W. Infective dermatitis of Jamaican children: a marker for HTLV-I infection.Lancet. 1990;336:1345–1347.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Nishioka K, Maruyama I, Sato K, Kitajima I, Nakajima Y, Osame M. Chronic inflammatory arthropathy associated with HTLV-I.Lancet. 1989;1:441.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Hanon E, Stinchcombe JC, Saito M, et al. Fratricide among CD8(+) T lymphocytes naturally infected with human T cell lymphotropic virus type I.Immunity. 2000;13:657–664.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Nagai M, Brennan MB, Sakai JA, Mora CA, Jacobson S. CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I.Blood. 2001;98:1858–1861.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Lehky TJ, Fox CH, Koenig S, et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization.Ann Neurol. 1995;37:167–175.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Matsuoka E, Takenouchi N, Hashimoto K, et al. Perivascular T cells are infected with HTLV-I in the spinal cord lesions with HTLV-I-associated myelopathy/tropical spastic paraparesis: double staining of immunohistochemistry and polymerase chain reaction in situ hybridization.Acta Neuropathol (Berl). 1998;96:340–346.

    Article  CAS  Google Scholar 

  19. 19.

    Southern SO, Southern PJ. Persistent HTLV-I infection of breast luminal epithelial cells: a role in HTLV transmission?Virology. 1998;241:200–214.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Ijichi S, Izumo S, Eiraku N, et al. An autoaggressive process against bystander tissues in HTLV-I-infected individuals: a possible pathomechanism of HAM/TSP.Med Hypotheses. 1993;41:542–547.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Daenke S, Bangham CR. Do T cells cause HTLV-1-associated disease? A taxing problem.Clin Exp Immunol. 1994;96:179–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yoshida M, Osame M, Kawai H, et al. Increased replication of HTLV-I in HTLV-I-associated myelopathy.Ann Neurol. 1989;26:331–335.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Gessain A, Saal F, Gout O, et al. High human T-cell lymphotropic virus type I proviral DNA load with polyclonal integration in peripheral blood mononuclear cells of French West Indian, Guianese, and African patients with tropical spastic paraparesis.Blood. 1990;75:428–433.

    PubMed  CAS  Google Scholar 

  24. 24.

    Kira J, Koyanagi Y, Yamada T, et al. Increased HTLV-I proviral DNA in HTLV-I-associated myelopathy: a quantitative polymerase chain reaction study.Ann Neurol. 1991;29:194–201.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Kubota R, Fujiyoshi T, Izumo S, et al. Fluctuation of HTLV-I proviral DNA in peripheral blood mononuclear cells of HTLV-I-associated myelopathy.J Neuroimmunol. 1993;42:147–154.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Nagai M, Usuku K, Matsumoto W, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP.J Neurovirol. 1998;4:586–593.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Matsuzaki T, Nakagawa M, Nagai M, et al. HTLV-I proviral load correlates with progression of motor disability in HAM/TSP: analysis of 239 HAM/TSP patients including 64 patients followed up for 10 years.J Neurovirol. 2001;7:228–234.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Taylor GP, Tosswill JH, Matutes E, et al. Prospective study of HTLV-I infection in an initially asymptomatic cohort.J Acquir Immune Defic Syndr. 1999;22:92–100.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Manns A, Miley WJ, Wilks RJ, et al. Quantitative proviral DNA and antibody levels in the natural history of HTLV-I infection.J Infect Dis. 1999;180:1487–1493.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Daenke S, Nightingale S, Cruickshank JK, Bangham CR. Sequence variants of human T-cell lymphotropic virus type I from patients with tropical spastic paraparesis and adult T-cell leukemia do not distinguish neurological from leukemic isolates.J Virol. 1990;64:1278–1282.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Bangham CR. The immune response to HTLV-I.Curr Opin Immunol. 2000;12:397–402.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Slattery JP, Franchini G, Gessain A. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses.Genome Res. 1999;9:525–540.

    PubMed  CAS  Google Scholar 

  33. 33.

    Furukawa Y, Yamashita M, Usuku K, Izumo S, Nakagawa M, Osame M. Phylogenetic subgroups of human T cell lymphotropic virus (HTLV) type I in the tax gene and their association with different risks for HTLV-I-associated myelopathy/tropical spastic paraparesis.J Infect Dis. 2000;182:1343–1349.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Taylor GP, Hall SE, Navarrete S, et al. Effect of lamivudine on human T-cell leukemia virus type 1 (HTLV-1) DNA copy number, T-cell phenotype, and anti-tax cytotoxic T-cell frequency in patients with HTLV-1-associated myelopathy.J Virol. 1999;73:10289–10295.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Bangham CRM. The immune control and cell to cell spread of HTLV-1.J Gen Virol. In press.

  36. 36.

    Jacobson S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease.J Infect Dis. 2002;186(suppl 2):S187-S192.

    Article  PubMed  Google Scholar 

  37. 37.

    Yu F, Itoyama Y, Fujihara K, Goto I. Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic paraparesisdecrease in NK cell subset populations and activity in HTLV-I seropositive individuals.J Neuroimmunol. 1991;33:121–128.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Saito M, Braud VM, Goon P, et al. Low frequency of CD94/ NKG2A+ T lymphocytes in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis, but not in asymptomatic carriers.Blood. 2003;102:577–584.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    McMichael AJ. Principles of immunology. In: Warrell DA, Cox TM, Firth JD, Benz EJ, eds,Oxford Textbook of Medicine. 4th ed. Oxford: Oxford University Press; 2003:131–144.

    Google Scholar 

  40. 40.

    Umehara F, Izumo S, Nakagawa M, et al. Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLVI-associated myelopathy.J Neuropathol Exp Neurol. 1993;52:424–430.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Iwasaki Y, Ohara Y, Kobayashi I, Akizuki S. Infiltration of helper/ inducer T lymphocytes heralds central nervous system damage in human T-cell leukemia virus infection.Am J Pathol. 1992;140:1003–1008.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Niewiesk S, Daenke S, Parker CE, et al. The transactivator gene of human T-cell leukemia virus type I is more variable within and between healthy carriers than patients with tropical spastic paraparesis.J Virol. 1994;68:6778–6781.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Bangham CRM, Kermode AG, Hall SE, Daenke S. The cytotoxic T-lymphocyte response to HTLV-I: the main determinant of disease?Semin Virol. 1996;7:41–48.

    Article  Google Scholar 

  44. 44.

    Nowak MA, Bangham CR. Population dynamics of immune responses to persistent viruses.Science. 1996;272:74–79.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Jeffery KJ, Usuku K, Hall SE, et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy.Proc Natl Acad Sci U S A. 1999;96:3848–3853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Jeffery KJ, Siddiqui AA, Bunce M, et al. The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection.J Immunol. 2000;165:7278–7284.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Vine AM, Witkover AD, Lloyd AL, et al. Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis.J Infect Dis. 2002;186:932–939.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Cavrois M, Gessain A, Wain-Hobson S, Wattel E. Proliferation of HTLV-1 infected circulating cells in vivo in all asymptomatic carriers and patients with TSP/HAM.Oncogene. 1996;12:2419–2423.

    PubMed  CAS  Google Scholar 

  49. 49.

    Asquith B, Bangham CR. An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis.Proc R Soc Lond B Biol Sci. 2003;270:1651–1657.

    Article  Google Scholar 

  50. 50.

    Asquith B, Bangham CR. The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology.J Theor Biol. 2003;222:53–69.

    Article  PubMed  Google Scholar 

  51. 51.

    Okochi K, Sato H. Transmission of ATLV (HTLV-I) through blood transfusion.Princess Takamatsu Symp. 1984;15:129–135.

    PubMed  CAS  Google Scholar 

  52. 52.

    Popovic M, Sarin PS, Robert-Gurroff M, et al. Isolation and trans mission of human retrovirus (human t-cell leukemia virus).Science. 1983;219:856–859.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Yamamoto N, Okada M, Koyanagi Y, Kannagi M, Hinuma Y. Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line.Science. 1982;217:737–739.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Fan N, Gavalchin J, Paul B, Wells KH, Lane MJ, Poiesz BJ. Infection of peripheral blood mononuclear cells and cell lines by cell-free human T-cell lymphoma/leukemia virus type I.J Clin Microbiol. 1992;30:905–910.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Goon PKC, Hanon E, Igakura T, et al. High frequencies of Th1-type CD4(+) T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis.Blood. 2002;99:3335–3341.

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation.Science. 1999;285:221–227.

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Igakura T, Stinchcombe JC, Goon PK, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton.Science. 2003;299:1713–1716.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Schick P, Trepel F, Eder M, et al. Autotransfusion of 3H-cytidinelabelled blood lymphocytes in patients with Hodgkin’s disease and non-Hodgkin patients, II: exchangeable lymphocyte pools.Acta Haematol. 1975;53:206–218.

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Pabst R, Binns RM, Rothkotter HJ, Westermann J. Quantitative analysis of lymphocyte fluxes in vivo.Curr Top Microbiol Immunol. 1993;184:151–159.

    PubMed  CAS  Google Scholar 

  60. 60.

    Westermann J, Persin S, Matyas J, van der Meide P, Pabst R. IFNgamma influences the migration of thoracic duct B and T lymphocyte subsets in vivo. Random increase in disappearance from the blood and differential decrease in reappearance in the lymph.J Immunol. 1993;150:3843–3852.

    PubMed  CAS  Google Scholar 

  61. 61.

    Westermann J, Puskas Z, Pabst R. Blood transit and recirculation kinetics of lymphocyte subsets in normal rats.Scand J Immunol. 1988;28:203–210.

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Ford WL. Lymphocyte migration and immune responses.Prog Allergy. 1975;19:1–59.

    PubMed  CAS  Google Scholar 

  63. 63.

    Moritoyo T, Izumo S, Moritoyo H, et al. Detection of human T-lymphotropic virus type I p40tax protein in cerebrospinal fluid cells from patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis.J Neurovirol. 1999;5:241–248.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Hanon E, Hall S, Taylor GP, et al. Abundant tax protein expression in CD4+ T cells infected with human T- cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes.Blood. 2000;95:1386–1392.

    PubMed  CAS  Google Scholar 

  65. 65.

    Debacq C, Asquith B, Kerkhofs P, et al. Increased cell proliferation, but not reduced cell death, induces lymphocytosis in bovine leukemia virus-infected sheep.Proc Natl Acad Sci U S A. 2002;99:10048–10053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Asquith B, Debacq C, Macallan DC, Willems L, Bangham CR. Lymphocyte kinetics: the interpretation of labelling data.Trends Immunol. 2002;23:596–601.

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Macallan DC, Asquith B, Irvine AJ, et al. Measurement and modeling of human T cell kinetics.Eur J Immunol. 2003;33:2316–2326.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Macallan DC, Fullerton CA, Neese RA, Haddock K, Park SS, Hellerstein MK. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans.Proc Natl Acad Sci U S A. 1998;95:708–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Mohri H, Perelson AS, Tung K, et al. Increased turnover of T lym lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy.J Exp Med. 2001;194:1277–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Levin MC, Lee SM, Kalume F, et al. Autoimmunity due to molecular mimicry as a cause of neurological disease.Nat Med. 2002;8:509–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Goon PK, Igakura T, Hanon E, et al. High circulating frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4+ T cells in patients with HTLV-1-associated neurological disease.J Virol. 2003;77:9716–9722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease.Nature. 1990;348:245–248.

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Parker CE, Daenke S, Nightingale S, Bangham CR. Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis.Virology. 1992;188:628–636.

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Parker CE, Nightingale S, Taylor GP, Weber J, Bangham CR. Circulating anti-Tax cytotoxic T lymphocytes from human T-cell leukemia virus type I-infected people, with and without tropical spastic paraparesis, recognize multiple epitopes simultaneously.J Virol. 1994;68:2860–2868.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. 75.

    Elovaara I, Koenig S, Brewah AY, Woods RM, Lehky T, Jacobson S. High human T cell lymphotropic virus type 1 (HTLV-1)-specific precursor cytotoxic T lymphocyte frequencies in patients with HTLV-1-associated neurological disease.J Exp Med. 1993;177:1567–1573.

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Bieganowska K, Hollsberg P, Buckle GJ, et al. Direct analysis of viral-specific CD8+ T cells with soluble HLA- A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy.J Immunol. 1999;162:1765–1771.

    PubMed  CAS  Google Scholar 

  77. 77.

    Daenke S, Kermode AG, Hall SE, et al. High activated and memory cytotoxic T-cell responses to HTLV-1 in healthy carriers and patients with tropical spastic paraparesis.Virology. 1996;217:139–146.

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Kannagi M, Harada S, Maruyama I, et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV- I-infected cells.Int Immunol. 1991;3:761–767.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Pique C, Ureta-Vidal A, Gessain A, et al. Evidence for the chronic in vivo production of human T cell leukemia virus type I Rof and Tof proteins from cytotoxic T lymphocytes directed against viral peptides.J Exp Med. 2000;191:567–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Ishihara S, Okayama A, Stuver S, et al. Association of HTLV-I antibody profile of asymptomatic carriers with proviral DNA levels of peripheral blood mononuclear cells.J Acquir Immune Defic Syndr. 1994;7:199–203.

    PubMed  CAS  Google Scholar 

  81. 81.

    Kira J, Nakamura M, Sawada T, et al. Antibody titers to HTLV-Ip40tax protein and gag-env hybrid protein in HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with increased HTLV-I proviral DNA load.J Neurol Sci. 1992;107:98–104.

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Nagasato K, Nakamura T, Shirabe S, et al. Presence of serum antihuman T-lymphotropic virus type I (HTLV-I) IgM antibodies means persistent active replication of HTLV-I in HTLV-I-associated myelopathy.J Neurol Sci. 1991;103:203–208.

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Niewiesk S, Daenke S, Parker CE, et al. Naturally occurring variants of human T-cell leukemia virus type I Tax protein impair its recognition by cytotoxic T lymphocytes and the transactivation function of Tax.J Virol. 1995;69:2649–2653.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles R. M. Bangham.

About this article

Cite this article

Bangham, C.R.M. Human T-Lymphotropic Virus Type 1 (HTLV-1): Persistence and Immune Control. Int J Hematol 78, 297–303 (2003). https://doi.org/10.1007/BF02983553

Download citation

Key words

  • HTLV-1
  • Leukemia virus
  • Immune response
  • Genetics
  • Cytotoxic T-Lymphocyte