International Journal of Hematology

, Volume 79, Issue 1, pp 7–14 | Cite as

Stem Cell Plasticity in the Hematopoietic System

Progress in hematology


Bone marrow (BM) contains hematopoietic stem cells, which differentiate into all mature blood cells, and marrow stromal cells that provide the microenvironment for hematopoietic stem/progenitor cells along with the capability to differentiate into mature cells of multiple mesenchymal tissues including fat, bone, and cartilage. Recent studies indicate that adult BM also contains cells that can differentiate into nonhematopoietic cells of ectodermal, mesodermal, and endodermal tissues other than hematopoietic tissues, including liver, pancreas, kidney, lung, skin, gastrointestinal tract, heart, skeletal muscles, and neural tissues. Studies reporting the multipotentiality of BM cells have become a focus of interest because they suggest that clinical applications could be at hand using easily obtainable cells in the treatment of tissue damage or degenerative diseases. Presently, however, definitive evidence explaining the mechanism of this multipotentiality of BM stem cells is lacking. In this review, we summarize recent progress and controversies in investigation of the multipotentiality of adult BM-derived stem cells to differentiate into nonhematopoietic tissues.

Key words

Multipotentiality Plasticity Fusion Bone marrow-derived stem cell (BMSC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function?Cell. 2001;105:829–841.CrossRefGoogle Scholar
  2. 2.
    Fausto N. Hepatocyte differentiation and liver progenitor cells.Curr Opin Cell Biol. 1990;2:1036–1042.CrossRefGoogle Scholar
  3. 3.
    Grounds MD, Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration.Mol Cell Biol Hum Dis Ser. 1993;3:210–256.Google Scholar
  4. 4.
    Ray J, Peterson DA, Schinstine M, Gage FH. Proliferation, differentiation, and long-term culture of primary hippocampal neurons.Proc Natl Acad Sci USA. 1993;90:3602–3606.CrossRefPubMedGoogle Scholar
  5. 5.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science. 1992;255:1707–1710.CrossRefGoogle Scholar
  6. 6.
    Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo.Science. 1999;283:534–537.CrossRefGoogle Scholar
  7. 7.
    Morshead CM, Benveniste P, Iscove NN, van der Kooy D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations.Nat Med. 2002;8:268–273.CrossRefGoogle Scholar
  8. 8.
    Wurmser AE, Gage FH. Stem cells: cell fusion causes confusion.Nature. 2002;416:485–487.CrossRefGoogle Scholar
  9. 9.
    DeWitt N, Knight J. Biologists question adult stem-cell versatility.Nature. 2002;416:354.CrossRefGoogle Scholar
  10. 10.
    Holden C, Vogel G. Stem cells. Plasticity: time for a reappraisal?Science. 2002;296:2126–2129.CrossRefGoogle Scholar
  11. 11.
    Wells WA. Is transdifferentiation in trouble?J Cell Biol. 2002;157:15–18.CrossRefPubMedGoogle Scholar
  12. 12.
    D’Amour KA, Gage FH. Are somatic stem cells pluripotent or lineage-restricted?Nat Med. 2002;8:213–214.CrossRefGoogle Scholar
  13. 13.
    Herzog EL, Chai L, Krause DS. Plasticity of marrow derived stem cells.Blood. 2003;102:3483–3493.CrossRefGoogle Scholar
  14. 14.
    Graf T. Differentiation plasticity of hematopoietic cells.Blood. 2002;99:3089–3101.CrossRefGoogle Scholar
  15. 15.
    Tao H, Ma DD. Evidence for transdifferentiation of human bone marrow-derived stem cells: recent progress and controversies.Pathology. 2003;35:6–13.CrossRefGoogle Scholar
  16. 16.
    Huttmann A, Li CL, Duhrsen U. Bone marrow-derived stem cells and “plasticity.”Ann Hematol. 2003;82:599–604.CrossRefGoogle Scholar
  17. 17.
    Krause DS. Plasticity of marrow-derived stem cells.Gene Ther. 2002;9:754–758.CrossRefGoogle Scholar
  18. 18.
    Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.J Clin Invest. 2001;107:1395–1402.CrossRefPubMedGoogle Scholar
  19. 19.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science. 1997;276:71–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications.Stem Cells. 2001;19:180–192.CrossRefGoogle Scholar
  21. 21.
    Wolf NS, Kone A, Priestley GV, Bartelmez SH. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection.Exp Hematol. 1993;21:614–622.Google Scholar
  22. 22.
    Krause DS, Ito T, Fackler MJ, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells.Blood. 1994;84:691–701.Google Scholar
  23. 23.
    Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells.J Cell Biol. 1993;122:897–902.CrossRefGoogle Scholar
  24. 24.
    Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species.Nat Med. 1997;3:1337–1345.CrossRefGoogle Scholar
  25. 25.
    Krause DS, Theise ND, Collector MI, et al. Multi-organ, multilineage engraftment by a single bone marrow-derived stem cell.Cell. 2001;105:369–377.CrossRefGoogle Scholar
  26. 26.
    Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells.Science. 2002;297:2256–2259.CrossRefGoogle Scholar
  27. 27.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet. 1970;3:393–403.Google Scholar
  28. 28.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation. 1968;6:230–247.CrossRefGoogle Scholar
  29. 29.
    Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow.Nature. 2002;418:41–49.CrossRefGoogle Scholar
  30. 30.
    Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood. 2001;98:2615–2625.CrossRefGoogle Scholar
  31. 31.
    Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J Clin Invest. 2002;109:1291–1302.CrossRefPubMedGoogle Scholar
  32. 32.
    Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion.Nature. 2002;416:542–545.CrossRefGoogle Scholar
  33. 33.
    Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion.Nature. 2002;416:545–548.CrossRefGoogle Scholar
  34. 34.
    Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors.Science. 1998;279:1528–1530.CrossRefGoogle Scholar
  35. 35.
    LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury.Cell. 2002;111:589–601.CrossRefGoogle Scholar
  36. 36.
    Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation.Nature. 1999;401:390–394.Google Scholar
  37. 37.
    Brazelton TR, Nystrom M, Blau HM. Significant differences among skeletal muscles in the incorporation of bone marrowderived cells.Dev Biol. 2003;262:64–74.CrossRefGoogle Scholar
  38. 38.
    Gussoni E, Bennett RR, Muskiewicz KR, et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation.J Clin Invest. 2002;110:807–814.CrossRefPubMedGoogle Scholar
  39. 39.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium.Nature. 2001;410:701–705.CrossRefGoogle Scholar
  40. 40.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.Nat Med. 2001;7:430–436.CrossRefGoogle Scholar
  41. 41.
    Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro.J Clin Invest. 1999;103:697–705.CrossRefPubMedGoogle Scholar
  42. 42.
    Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival.Proc Natl Acad Sci US A. 2001;98:10344–10349.CrossRefGoogle Scholar
  43. 43.
    Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart.N Engl J Med. 2002;346:5–15.CrossRefGoogle Scholar
  44. 44.
    Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation.Lancet. 2003;361:47–49.CrossRefGoogle Scholar
  45. 45.
    Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration.Lancet. 2003;361:454–456.CrossRefGoogle Scholar
  46. 46.
    Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells.Science. 1999;284:1168–1170.CrossRefGoogle Scholar
  47. 47.
    Theise ND, Badve S, Saxena R, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation.Hepatology. 2000;31:235–240.CrossRefGoogle Scholar
  48. 48.
    Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from nonhepatic adult stem cells.Nature. 2000;406:257.CrossRefGoogle Scholar
  49. 49.
    Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans.Hepatology. 2000;32:11–16.CrossRefGoogle Scholar
  50. 50.
    Austin TW, Lagasse E. Hepatic regeneration from hematopoietic stem cells.Mech Dev. 2003;120:131–135.CrossRefGoogle Scholar
  51. 51.
    Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med. 2000;6:1229–1234.CrossRefGoogle Scholar
  52. 52.
    Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes.Nature. 2003;422:897–901.CrossRefGoogle Scholar
  53. 53.
    Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells.N EnglJ Med. 2002;346:738–746.CrossRefGoogle Scholar
  54. 54.
    Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice.Science. 2000;290:1775–1779.CrossRefGoogle Scholar
  55. 55.
    Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.Science. 2000;290:1779–1782.CrossRefGoogle Scholar
  56. 56.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res. 2000;61:364–370.CrossRefGoogle Scholar
  57. 57.
    Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells.J Neurosci. 2002;22:6623–6630.CrossRefPubMedGoogle Scholar
  58. 58.
    Akiyama Y, Radtke C, Honmou O, Kocsis JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells.Glia. 2002;39:229–236.CrossRefPubMedGoogle Scholar
  59. 59.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol. 2000;164:247–256.CrossRefGoogle Scholar
  60. 60.
    Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery.Proc Natl Acad Sci USA. 2002;99:2199–2204.CrossRefPubMedGoogle Scholar
  61. 61.
    Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration.Nat Biotechnol. 2003;21:763–770.CrossRefPubMedGoogle Scholar
  62. 62.
    Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion.J Clin Invest. 2003;111:843–850.CrossRefPubMedGoogle Scholar
  63. 63.
    Okamoto R, Yajima T, Yamazaki M, et al. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract.Nat Med. 2002;8:1011–1017.CrossRefGoogle Scholar
  64. 64.
    Theise ND, Henegariu O, Grove J, et al. Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment from bone marrow.Exp Hematol. 2002;30:1333–1338.CrossRefGoogle Scholar
  65. 65.
    Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule.J Clin Invest. 2003;112:42–49.CrossRefPubMedGoogle Scholar
  66. 66.
    Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME. A role for extrarenal cells in the regeneration following acute renal failure.Kidney Int. 2002;62:1285–1290.CrossRefGoogle Scholar
  67. 67.
    Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow contributes to renal parenchymal turnover and regeneration.J Pathol. 2001;195:229–235.CrossRefGoogle Scholar
  68. 68.
    Grimm PC, Nickerson P, Jeffery J, et al. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection.N EnglJ Med. 2001;345:93–97.CrossRefGoogle Scholar
  69. 69.
    Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling.J Am Soc Nephrol. 2001;12:2625–2635.Google Scholar
  70. 70.
    Cornacchia F, Fornoni A, Plati AR, et al. Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors.J Clin Invest. 2001;108:1649–1656.CrossRefPubMedGoogle Scholar
  71. 71.
    Hematti P, Sloand EM, Carvallo CA, et al. Absence of donorderived keratinocyte stem cells in skin tissues cultured from patients after mobilized peripheral blood hematopoietic stem cell transplantation.Exp Hematol. 2002;30:943–949.CrossRefGoogle Scholar
  72. 72.
    Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion.Nature. 2003;422:901–904.CrossRefGoogle Scholar
  73. 73.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM. Fusion of bonemarrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.Nature. 2003;425:968–973.CrossRefGoogle Scholar
  74. 74.
    Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant.Nat Cell Biol. 2003;5:959–966.CrossRefGoogle Scholar
  75. 75.
    Blau HM. A twist of fate.Nature. 2002;419:437.CrossRefGoogle Scholar
  76. 76.
    Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c) (null) mouse: an excellent recipient mouse model for engraftment of human cells.Blood. 2002;100:3175–182.CrossRefGoogle Scholar
  77. 77.
    Hiramatsu H, Nishikomori R, Heike T, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model.Blood. 2003;102:873–880.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  1. 1.Department of PediatricsGraduate School of Medicine, Kyoto UniversityKyotoJapan

Personalised recommendations