International Journal of Hematology

, Volume 79, Issue 1, pp 1–6 | Cite as

Plasticity of Human Stem Cells in the Fetal Sheep Model of Human Stem Cell Transplantation

  • Graça Almeida-Porada
  • Christopher Porada
  • Esmail D. Zanjani
Progress in hematology


Experimental models that allow the evaluation of the full potential of stem cells under normal physiological conditions and in the absence of genetic or injury-induced dysfunction would serve as valuable tools for the study of the mechanisms underlying stem cell differentiation. Ideally, such a model would also permit the robust formation of donor-derived tissue-specific cells. Because studies have shown that the differentiation of stem cells into cells of a different germinal layer is highly inefficient in the absence of selective pressure, it is very unlikely that a healthy adult animal can fulfill these requirements. In this review, we describe the advantages of the permissive aspects of the developing preimmune fetus in the early gestational age that led us to develop the sheep as a large-animal model of human stem cell plasticity.

Key words

Stem cells Plasticity In utero transplantation Transdifferentiation In vivo model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med. 2000;6:1229–1234.CrossRefPubMedGoogle Scholar
  2. 2.
    Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells.Science. 1999;284:1168–1170.CrossRefPubMedGoogle Scholar
  3. 3.
    Theise ND, Badve S, Saxena R, et al. Derivation of hepatocytes from bone marrow cells of mice after radiation-induced myeloablation.Hepatology. 2000;31:235–240.CrossRefPubMedGoogle Scholar
  4. 4.
    Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.Cell. 2001;105:369–377.CrossRefPubMedGoogle Scholar
  5. 5.
    Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells.Science. 2002;297:2256–2259.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang X, Montini E, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Kinetics of liver repopulation after bone marrow transplantation.Am J Pathol. 2002;161:565–574.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mallet VO, Mitchell C, Mezey E, et al. Bone marrow transplantation in mice leads to a minor population of hepatocytes that can be selectively amplified in vivo.Hepatology. 2002;35:799–804.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells.Blood. 2003;101:4201–4208.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans.Hepatology. 2000;32:11–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from nonhepatic adult stem cells.Nature. 2000;406:257.CrossRefPubMedGoogle Scholar
  11. 11.
    Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells.N Engl J Med. 2002;346:738–746.CrossRefPubMedGoogle Scholar
  12. 12.
    Danet GH, Luongo JL, Butler G, et al. C1qRp defines a new human stem cell population with hematopoietic and hepatic potential.Proc Natl Acad Sci USA. 2002;99:10441–10445.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J Clin Invest. 2002;109:1291–1302.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED. Differentiative potential of human metanephric mesenchymal cells.Exp Hematol. 2002;30:1454–1462.CrossRefPubMedGoogle Scholar
  15. 15.
    Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors.Science. 1998;279:1528–1530.CrossRefPubMedGoogle Scholar
  16. 16.
    Bjornson CRR, Rietze RL, Reynolds BA, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo.Science. 1999;283:534–537.CrossRefPubMedGoogle Scholar
  17. 17.
    Bittner RE, Popoff I, Shorny S, et al. Dystrophin expression in heterozygous mdx/+ mice indicates imprinting of X chromosome inactivation by parent-of-origin-, tissue-, strain- and position-dependent factors.Anat Embryol (Berl). 1997;195:175–182.CrossRefPubMedGoogle Scholar
  18. 18.
    Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation.Nature. 1999;401:390–394.PubMedGoogle Scholar
  19. 19.
    Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells.Science. 2000;288:1660–1663.CrossRefPubMedGoogle Scholar
  20. 20.
    Watt FM. Epidermal stem cells: markers, patterning and the control of stem cell fate.Philos Trans R Soc Lond B Biol Sci. 1998;353:831–837.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ormerod EJ, Rudland PS. Regeneration of mammary glands in vivo from isolated mammary ducts.J Embryol Exp Morphol. 1986;96:229–243.PubMedGoogle Scholar
  22. 22.
    Seale P, Rudnicki MA. A new look at the origin, function, and “stem-cell” status of muscle satellite cells.Dev Biol. 2000;218:115–124.CrossRefPubMedGoogle Scholar
  23. 23.
    Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS.Annu Rev Neurosci. 1995;18:159–192.CrossRefPubMedGoogle Scholar
  24. 24.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus.Nat Med. 1998;4:1313–1317.CrossRefPubMedGoogle Scholar
  25. 25.
    Block GD, Locker J, Bowen WC, et al. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGFα in a chemically defined (HGM) medium.J Cell Biol. 1996;132:1133–1149.CrossRefPubMedGoogle Scholar
  26. 26.
    Reid GM, Tervit HM. Sudden infant death syndrome: near weightlessness and delayed neural transformation.Med Hypotheses. 1996;46:383–387.CrossRefPubMedGoogle Scholar
  27. 27.
    Serova LV. The maternal-fetal system as an object for the study of mechanisms of the physiologic effect of weightlessness [in Russian].Kosm BiolAviakosm Med. 1987;21:63–66.Google Scholar
  28. 28.
    Wood C. Weightlessness: its implications for the human fetus.Obstet Gynaecol Br Commonw. 1970;77:333–336.CrossRefGoogle Scholar
  29. 29.
    Susse HJ, Wurterle A. The shifting center of gravity in the growing fetus [in German].Zentralbl Gynakol. 1967;89:980–984.PubMedGoogle Scholar
  30. 30.
    Hammond TG, Benes E, O'Reilly KC, et al. Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle.Physiol Genomics. 2000;3:163–173.CrossRefPubMedGoogle Scholar
  31. 31.
    de Groot RP, Rijken PJ, den Hertog J, et al. Microgravity decreases c-fos induction and serum response element activity.J Cell Sci. 1990;97:33–38.Google Scholar
  32. 32.
    de Groot RP, Rijken PJ, den Hertog J, et al. Nuclear responses to protein kinase C signal transduction are sensitive to gravity.Exp Cell Res. 1991;197:87–90.CrossRefGoogle Scholar
  33. 33.
    Walther I, Pippia P, Meloni MA, et al. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes.FEBS Lett. 1998;436:115–118.CrossRefPubMedGoogle Scholar
  34. 34.
    Hammond TG, Lewis FC, Goodwin TJ, et al. Gene expression in space.Nat Med. 1999;5:359.CrossRefPubMedGoogle Scholar
  35. 35.
    Stein GS, van Wijnen AJ, Stein JL, et al. Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions.FASEB J. 1999;13:157–166.CrossRefGoogle Scholar
  36. 36.
    Margolis L, Hatfill S, Chuaqui R, et al. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor.J Urol. 1999;161:290–297.CrossRefPubMedGoogle Scholar
  37. 37.
    Akins RE, Schroedl NA, Gonda SR, et al. Neonatal rat heart cells cultured in simulated microgravity.In Vitro Cell Dev Biol Anim. 1997;33:337–343.CrossRefPubMedGoogle Scholar
  38. 38.
    Zanjani ED, Pallavicini MG, Ascensao JL, et al. Engraftment and long-term expression of human fetal hematopoietic stem cells in sheep following transplantation in utero.J Clin Invest. 1992;89:1178–1188.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Civin CI, Almeida-Porada G, Lee M-J, Olweus J, Terstappen LWMM, Zanjani ED. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo.Blood. 1996;88:4102–4109.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yin AH, Miragi AS, Zanjani ED, et al. AC133, A novel marker for human hematopoietic stem and progenitor cells.Blood. 1997;90:5002–5012.PubMedGoogle Scholar
  41. 41.
    Shimizu Y, Ogawa M, Kobayashi M, Almeida-Porada G, Zanjani ED. Engraftment of cultured human hematopoietic cells in sheep.Blood. 1998;91:3688–3692.PubMedGoogle Scholar
  42. 42.
    Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M. Human bone marrow CD34: cells engraft in vivo and undergo multilineage expression including giving rise to CD34+ cells.Exp Hematol. 1998;26:353–360.PubMedGoogle Scholar
  43. 43.
    Giesert C, Almeida-Porada G, Scheffold A, Kanz L, Zanjani ED, Buhring HJ. The monoclonal antibody W7C5 defines a novel surface antigen on hematopoietic stem cells.Ann N Y Acad Sci. 2001;938:175–183.CrossRefPubMedGoogle Scholar
  44. 44.
    Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani ED. Kinetics of engraftment of CD34- and CD34+ cells from mobilized blood differs from that of CD34- and CD34+ cells from bone marrow.Exp Hematol. 2000;28:1071–1079.CrossRefPubMedGoogle Scholar
  45. 45.
    Almeida-Porada G, Hoffman R, Manalo P, et al. Detection of human cells in human/sheep chimeric lambs with in vitro human stroma-forming potential.Exp Hematol. 1996;24:482–487.PubMedGoogle Scholar
  46. 46.
    Zanjani ED, Porada P, Crapnell KB, et al. Production of human hepatocytes by human CD34+/- cells in vivo [abstract].Blood. 2000;96:494a..Google Scholar
  47. 47.
    Almeida-Porada G, Crapnell K, Porada C, et al. Transplantation of human neuronal stem cells into fetal sheep give rise to hematopoietic cells in vivo [abstract].Blood. 1999;94:129a.Google Scholar
  48. 48.
    Almeida-Porada G, Crapnell K, Porada C, et al. In vivo hematopoietic potential of human neuronal stem cells.Exp Hematol. 2000;28:61a.CrossRefGoogle Scholar
  49. 49.
    Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood. 2000;98:2615–2625.CrossRefGoogle Scholar
  50. 50.
    Liechty KW, MacKenzie, TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.Nat Med. 2000;6:1282–1286.CrossRefPubMedGoogle Scholar
  51. 51.
    Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains.Proc Natl Acad Sci USA. 1999;96:10711–10716.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol. 2000;164:247–256.CrossRefPubMedGoogle Scholar
  53. 53.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res. 2000;61:364–370.CrossRefPubMedGoogle Scholar
  54. 54.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells.Science. 1999;284:143–147.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.Tissue Eng. 1998;4:415–428.CrossRefPubMedGoogle Scholar
  56. 56.
    Almeida-Porada G, Porada C, El Shabrawy D, Simmons PJ, Zanjani ED. Human marrow stromal cells (MSC) represent a latent pool of stem cells capable of generating long-term hematopoietic cells [abstract].Blood. 2001;98:713a.Google Scholar
  57. 57.
    Almeida-Porada G, El Shabrawy D, Porada C, Ascensao JL, Zanjani ED. Clonally derived marrow stromal cells (MSC) populations are able to differentiate into blood, liver and skin cells [abstract].Blood. 2001;98:791a.Google Scholar
  58. 58.
    Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes.Nature. 2003;422:897–901.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  • Graça Almeida-Porada
    • 1
  • Christopher Porada
    • 1
  • Esmail D. Zanjani
    • 1
  1. 1.Department of Animal BiotechnologyUniversity of Nevada RenoRenoUSA

Personalised recommendations