Comparison of Microvessel Density Before and after Peripheral Blood Stem Cell Transplantation in Multiple Myeloma Patients and Its Clinical Implications: Multicenter Trial

Abstract

Bone marrow angiogenesis has been reported to increase in several hematologic malignant diseases, including multiple myeloma. Because high-dose chemotherapy combined with autologous stem cell transplantation (SCT) improves the response rate, event-free survival, and overall survival in patients with multiple myeloma (MM), we studied the changes in bone marrow microvessel density (MVD) in 21 patients who underwent high-dose chemotherapy combined with autologous SCT to determine whether there was persistently increased angiogenesis at the time of response. Bone marrow biopsy specimens were obtained before and after SCT for each patient and immunostained with anti-CD34 antibodies for the identification of microvascular endothelial cells. The mean value of MVD in 21 MM patients at initial diagnosis was 46.0 ± 24.0 and in healthy controls was 26.8 ± 8.54 (P = .046). The mean MVD at initial diagnosis was 46.0 ± 24.0 compared with 29.0 ± 12.5 after achievement of response with SCT, and there was a statistically significant difference (P = .004). Sixteen of 21 patients (76.2%) had decreased MVD after SCT, and 5 patients were found to have a greater than 50% decrease in MVD after SCT. However, there was no difference in overall survival between the patient group with decreased MVD after SCT and that without decreased MVDP = .9370). These results suggest that angiogenesis plays an important role in MM. In addition, the persistence of MVD at the time of response indicates continuous stimulus of microvessels by minimal residual disease even after SCT. Int J Hematol. 2002;76:465-470.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Weidner N, Semple HP, Welch WR, Folkman J.Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma.N Engl J Med. 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Dickinson AH, Fow SB, Persad RA, Hollyer J, Sibley GN, Harris AL. Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas.Br J Urol. 1994;74: 762–766.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Folkman J. Seminars in medicine of the Beth Israel Hospital, Boston: clinical applications of research on angiogenesis.N Engl J Med. 1995;333:1757–1763.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Folkman J. New perspectives in clinical oncology from angiogenesis research.Eur J Cancer. 1996;32A:2534–2539.

    Article  Google Scholar 

  5. 5.

    Fox SB. Tumor angiogenesis and prognosis.Histopathology. 1997; 30:294–301.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Hamada J, Cavanaugh PG, Lotan O, Nicholoson G. Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis.Br J Cancer. 1992;66:349–354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Rank J, Filmus J, Kerbel RS. Reciprocal paracrine interactions between tumor cells and endothelial cells: the angiogenesis progression hypothesis.Eur J Cancer. 1996;32A:2438–2450.

    Article  Google Scholar 

  8. 8.

    Gasparini G, Weidner N, Maluta S, et al. Intratumoral microvessel density and p53 protein: correlation with metastasis in head and neck squamous cell carcinoma.Int J Cancer. 1993;55:739–744.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Ellis LM, Fidler IJ. Angiogenesis and breast cancer metastasis.Lancet. 1995;346:388–390.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Maeda K, Chung YS, Takasuka S, et al. Tumor angiogenesis as a predictor of recurrence in gastric carcinoma.J Clin Oncol. 1995;13: 477–481.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Wiggins DL, Granai CO, Steinhoff MM, Calabresi P. Tumor angio- genesis as a prognostic factor in cervical carcinoma.Gynecol Oncol. 1995;56:353–356.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Fontanini G, Lucchi M, Vignati S, et al. Angiogenesis as a prognostic indicator of survival in non-small cell lung carcinoma: a prospective study.J Natl Cancer Inst. 1997:89:881–886.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Acenero MJ, Gonzalex JF, Gallego MG, Ballesteros PA. Vascular enumeration as a significant prognosticator for invasive breast carcinoma.J Clin Oncol. 1998;16:1684–1689.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Vacca A, Ribatti D, Roncali L, Dammacco F. Angiogenesis in B cell lymphoproliferative diseases: biological and clinical studies.Leuk Lymphoma. 1995;20:27–38.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Perez-Atayde AR, Sallan SE, Tedrow U, Connors EA, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia.Am J Pathol. 1997;150:815–821.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. 16.

    Padro T, Ruiz S, Bieker R, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia.Blood. 2000;95: 2637–2644.

    PubMed  CAS  Google Scholar 

  17. 17.

    Vacca A, Ribatti D, Roncali L, et al. Bone marrow angiogenesis and progression in multiple myeloma.Br J Haematol. 1994;87: 503–508.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Barlogie B, Epstein J, Selvanayagam P. Plasma cell myeloma: new insights and advances in therapy.Blood. 1989;73:865–879.

    PubMed  CAS  Google Scholar 

  19. 19.

    Attal M, Harousseau JL, Stoppa AM, et al. A prospective randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome.N Engl J Med. 1996;335:91–97.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Durie BGM, Salmon SE. Multiple myeloma, macroglobulinemia, and monoclonal gammopathies. In: Hoffbrand AB, Brain MC, Hirsh J, eds.Recent Advances in Hematology. New York, NY: Churchill Livingstone; 1977:243–261.

    Google Scholar 

  21. 21.

    Vermeulen PB, Gasparini G, Fox SB, et al. Quantification of angio- genesis in solid human tumors: an international consensus on the methodology and criteria of evaluation.Eur J Cancer. 1996;32A: 2474–2484.

    Article  Google Scholar 

  22. 22.

    Dankbar B, Padro T, Leo R, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma.Blood. 2000;95:2630–2636.

    PubMed  CAS  Google Scholar 

  23. 23.

    Rajkumar SB, Fonseca R, Witzig TE, Gertx MA, Geipp PR. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma.Leukemia. 1999; 13:469–472.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Barille A, Akhoundi C, Collette M, et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9, activation of proMMP-2, and induction of MMP-1 by myeloma cells.Blood. 1997;90:1649–1655.

    PubMed  CAS  Google Scholar 

  25. 25.

    Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma.Blood. 1999;93:3064–3073.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ho Suk Oh or Jung-Hae Choi or Chan Keum Park or Chul Won Jung or Soon Il Lee or Quehn Park or Cheolwon Suh or Sung-Bae Kim or Hyun Sook Chi or Jae Hoon Lee or Eun Kyung Cho or Soo-Mee Bang or Myung-Ju Ahn.

About this article

Cite this article

Oh, H.S., Choi, J., Park, C.K. et al. Comparison of Microvessel Density Before and after Peripheral Blood Stem Cell Transplantation in Multiple Myeloma Patients and Its Clinical Implications: Multicenter Trial. Int J Hematol 76, 465–470 (2002). https://doi.org/10.1007/BF02982813

Download citation

Key words

  • Microvessel density
  • Multiple myeloma
  • Stem cell transplantation