The Control of Expression of the α-Globin Gene Cluster

Abstract

The α-globin gene cluster is located at the very tip of the short arm of chromosome 16. It produces the α-like globins, which is combined with the β-like globins to form hemoglobin, and its mutants cause α-thalassemia, which is one of the most common genetic diseases. Its expression shows a tissue and developmental stage specificity that is balanced with that of the β-globin gene cluster. In this article, we summarize the research on the control of expression of the α-globin gene cluster, mainly with respect to the α—major regulatory element (α-MRE): HS-40, the tissue-specific and developmental control of its expression, and its chromosomal environment. In summary, the α-globin gene cluster is expressed in an open chromosomal environment; HS-40, the 5-flanking sequence, the transcribed region, and the 3-flanking sequence interact to fully regulate its expression.Int J Hematol. 2002;76:420-426.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ. A review of the molecular genetics of the human α-globin gene cluster.Blood. 1989; 73: 1081–1104.

    CAS  PubMed  Google Scholar 

  2. 2.

    Higgs DR, Sharpe JA, Wood WG. Understanding α-globin gene expression: a step towards effective gene therapy.Semin Hematol. 1998; 35: 93–104.

    CAS  PubMed  Google Scholar 

  3. 3.

    Higgs DR,Wood WG, Jarman AP, et al. A major positive regulatory region located far upstream of the human α-globin gene locus.Genes Dev. 1990; 4: 1588–1601.

    Article  PubMed  Google Scholar 

  4. 4.

    Jarman AP, Wood WG, Sharpe JA, Gourdon G, Ayyub H, Higgs DR. Characterization of the major regulatory element upstream of the human α-globin gene cluster.Mol Cell Biol. 1991; 11: 4679–4689.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. 5.

    Strauss EC, Andrews NC, Higgs DR, Orkin SH. In vivo footprinting of the human α-globin locus upstream regulatory element by guanine and adenine ligation-mediated polymerase chain reaction.Mol Cell Biol. 1992; 12: 2135–2142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. 6.

    Zhang Q, Reddy PMS, Yu CH, et al. Transcriptional activation of human ζ2-globin promoter by the a-globin regulatory element (HS-40): functional role of specific nuclear factor-DNA complexes.Mol Cell Biol. 1993; 13: 2298–2308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. 7.

    Blank V, Andrews NC. The maf transcription factors: regulators of differentiation.Trends Biochem Sci. 1997; 22: 437–441.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Kobayashi A, Ito E, Toki T, et al. Molecular cloning and functional characterization of a new Capʼnn’ collar family transcription factor Nrf3.J Biol Chem. 1999; 274: 6443–6452.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Motohashi H, Shavit JA, Igarashi K, Yamamoto M, Engel JD. The world according to maf.Nucleic Acids Res. 1997; 25: 2953–2960.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. 10.

    Huang BL, Fan-Chiang IR, Wen SC, et al. Derepression of human embryonic ζ-globin promoter by a locus-control region sequence.Proc Natl Acad Sci U S A. 1998; 95: 14669–14674.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. 11.

    Pondel MD, Proudfoot NJ, Whitelaw C, Whitelaw E. The developmental regulation of the human ζ-globin gene in transgenic mice employing β-galactosidase as a reporter gene.Nucleic Acids Res. 1992; 20: 5655–5660.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. 12.

    Ren S, Luo XN, Atweh GF. The major regulatory element upstream of the alpha-globin gene has classical and inducible enhancer activity.Blood. 1993; 81: 1058–1066.

    CAS  PubMed  Google Scholar 

  13. 13.

    Gourdon G, Sharpe JA, Wells D, Wood WG, Higgs DR. Analysis of a 70 kbs segment of DNA containing the human ζ and α-globin genes linked to their regulatory element (HS-40) in transgenic mice.Nucleic Acids Res. 1994; 22: 4139–4147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. 14.

    Wang Z, Liebhaber SA. A 3-flanking NF-kappaB site mediates developmental silencing of the human zeta-globin gene.EMBO J. 1999; 18: 2218–2228.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15.

    Sharpe JA, Summerhill RJ, Vyas P, Gourdon G, Higgs DR, Wood WG. Role of upstream DNase I hypersensitive sites in the regulation of human alpha-globin gene expression.Blood. 1993; 82: 1666–1671.

    CAS  PubMed  Google Scholar 

  16. 16.

    Sharpe JA, Wells DJ, Whitelaw E, Vyas P, Higgs DR, Wood WG. Analysis of the human α-globin gene cluster in transgenic mice.Proc Natl Acad Sci U S A. 1993; 90: 11262–11266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. 17.

    Sharpe JA, Chan-Thomas PS, Lida J, Ayyub H, Wood WG, Higgs DR. Analysis of the human alpha-globin upstream regulatory element (HS-40) in transgenic mice.EMBO J. 1992; 11: 4565–4572.

    PubMed Central  CAS  Article  Google Scholar 

  18. 18.

    Grosveld F, Assendelft GB, Greares DR, et al. Position-independent, high-level expression of the human β-globin gene in transgenic mice.Cell. 1987; 51: 975–985.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Hanscombe O, Whyatt D, Fraser P, et al. Importance of globin gene order for correct developmental expression.Genes Dev. 1991; 5: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Feng DX, Liu DP, Huang Y, et al. The expression of human alphalike globin genes in transgenic mice mediated by bacterial artificial chromosome.Proc Natl Acad Sci U S A. 2001; 98: 15073–15077.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. 21.

    Wilgerde M, Grosveld F, Fraser P, et al. Transcription complex stability and chromatin dynamics in vivo.Nature. 1995; 377: 209–213.

    Article  Google Scholar 

  22. 22.

    Bulger M, Groudine M. Looping versus linking: toward a model for long-distance gene activation.Genes Dev. 1999; 13: 2465–2477.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Esperet C, Sabatier S, Deville MA, et al. Non-erythroid genes inserted on either side of human HS-40 impair the activation of its natural alpha-globin gene targets without being themselves preferentially activated.J Biol Chem. 2000; 275: 25831–25839.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Leder A, Daugherty C, Whitney B, Leder P. Mouse zeta- and alpha-globin genes: embryonic survival, alpha-thalassemia, and genetic background effects.Blood. 1997; 90: 1275–1282.

    CAS  PubMed  Google Scholar 

  25. 25.

    Trimborn T, Gribnau J, Grosveld F, Fraser P. Mechanisms of developmental control of transcription in the murine alpha- and beta-globin loci.Genes Dev. 1999; 13: 112–124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. 26.

    Esperet C, Starck J, Godet J, Morle F. Coactivation of human alpha1- and alpha2-globin genes in single induced MEL cells containing one human alpha-globin locus.Biochim Biophys Acta. 1997; 1352: 27–32.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Sabath DE, Koehler KM, Yang WQ, Phan V, Wilson J. DNA-protein interactions in the proximal zeta-globin promoter: identification of novel CCACCC- and CCAAT-binding proteins.Blood Cells Mol Dis. 1998; 24: 183–198.

    Article  PubMed  Google Scholar 

  28. 28.

    Treisman R, Green MR, Maniatis T. cis and trans activation of globin gene transcription in transient assays.Proc Natl Acad Sci U S A. 1983; 80: 7428–7432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. 29.

    Ren S, Li J, Atweh GF. CACCC and GATA-1 sequences make the constitutively expressed alpha-globin gene erythroid-responsive in mouse erythroleukemia cells.Nucleic Acids Res. 1996; 24: 342–347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. 30.

    Shewchuk BM, Hardison RC. CpG islands from the alpha-globin gene cluster increase gene expression in an integration-dependent manner.Mol Cell Biol. 1997; 17: 5856–5866.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. 31.

    Iudinkova ES, Lagar’kova MA, Razin SV. Molecular cloning and characteristics of the 5-terminal end of alpha-globin genes of chickens including potential regulator element of domain level.Dokl Akad Nauk. 1997; 356: 407–408.

    CAS  PubMed  Google Scholar 

  32. 32.

    Razin SV, Ioudinkova ES, Scherrer. Extensive methylation of a part of the CpG island located 3.0-4.5 kbp upstream to the chicken alpha-globin gene cluster may contribute to silencing the globin genes in non-erythroid cells.J Mol Biol. 2000; 299: 845–852.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Albitar M, Katsumata M, Liebhaber SA. Human α-globin genes demonstrate autonomous developmental regulation in transgenic mice.Mol Cell Biol. 1991; 11: 3786–3794.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. 34.

    Sabath DE, Spangler EA, Rubin EM, Stamatoyannopoulos G. Analysis of the human ζ-globin gene promoter in transgenic mice.Blood. 1993; 82: 2899–2905.

    CAS  PubMed  Google Scholar 

  35. 35.

    Spangler EA, Andrews KA, Rubin EM. Developmental regulation of the human zeta- globin gene in transgenic mice.Nucleic Acids Res. 1990; 18: 7093–7097.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. 36.

    Pondel MD, Sharpe JA, Clark S, Pearson L, Wood WG, Proudfoot NJ. Proximal promoter elements of the human zeta-globin gene confer embryonic-specific expression on a linked reporter gene in transgenic mice.Nucleic Acids Res. 1996; 24: 4158–4164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. 37.

    Sabath DE, Koehler KM, Yang WQ, Patton K, Stamatoyannopoulos G. Identification of a major positive regulatory element located 5 to the human ζ-globin gene.Blood. 1995; 85: 2587–2597.

    CAS  PubMed  Google Scholar 

  38. 38.

    Sabath DE, Koehler KM, Yang WQ. Structure and function of the zeta-globin upstream regulatory element.Nucleic Acids Res. 1996; 24: 4978–4986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. 39.

    Liebhaber SA, Wang Z, Cash FE, Monks B, Russell JE. Developmental silencing of the embryonic ζ-globin gene: concerted action of the promoter and the 3-flanking region combined with stage-specific silencing by the transcribed segment.Mol Cell Biol. 1996; 16: 2637–2646.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Chkheidze AN, Lyakhov DL, Makeyev AV, Morales J, Kong J, Liebhaber SA. Assembly of the alpha-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3 untranslated region determinant and poly(C) binding protein alphaCP.Mol Cell Biol. 1999; 19: 4572–4581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. 41.

    Liebhaber SA, Russell JE. Expression and developmental control of the human alpha-globin gene cluster.Ann N Y Acad Sci. 1998; 850: 54–63.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Russell JE, Morales J, Liebhaber SA. The role of mRNA stability in the control of globin gene expression.Prog Nucleic Acid Res Mol Biol. 1997; 57: 249–287.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Russell JE, Morales J, Makeyev AV, Liebhaber SA. Sequence divergence in the 3 -untranslated regions of human ζ- and α-globin mRNAs mediates a difference in their stabilities and contributes to efficient α- to ζ-gene developmental switching.Mol Cell Biol. 1998; 18: 2173–2183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. 44.

    Wen SC, Roder K, Hu KY, et al. Loading of DNA-binding factors to an erythroid enhancer.Mol Cell Biol. 2000; 20: 1993–2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. 45.

    Zhang Q, Rombel I, Reddy GN, Gang JB, Shen CKJ. Functional roles of in vivo footprinted DNA motifs within an α-globin enhancer: erythroid lineage and developmental stage specificities.J Biol Chem. 1995; 270: 8501–8505.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Flint J,Thomas K,Micklem G, et al. The relationship between chromosome structure and function at a human telomeric region.Nat Genet. 1997; 15: 252–257.

    Article  PubMed  Google Scholar 

  47. 47.

    Horsley SW, Daniels RJ, Anguita E, et al. Monosomy for the most telomeric, gene-rich region of the short arm of human chromosome 16 causes minimal phenotypic effects.Eur J Hum Genet. 2001; 9: 217–225.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Daniels RJ, Peden JF, Lloyd C, et al. Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16.Hum Mol Genet. 2001; 10: 339–352.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Vyas P, Vickers MA, Simmons DL, Ayyub H, Craddock CF, Higgs DR. Cis-acting sequences regulating expression of the human a-globin cluster lie within constitutively open chromatin.Cell. 1992; 69: 781–793.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Craddock CF, Vyas P, Sharpe JA, Ayyub H, Wood WG, Higgs DR. Contrasting effects of α and β globin regulatory elements on chromatin structure may be related to their different chromosomal environments.EMBO J. 1995; 14: 1718–1726.

    PubMed Central  CAS  Article  Google Scholar 

  51. 51.

    Smith ZE, Higgs DR. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression.Hum Mol Genet. 1999; 8: 1373–1386.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Jarman AP, Higgs DR. Nuclear scaffold attachment sites in the human globin gene complexes.EMBO J. 1988; 7: 3337–3344.

    PubMed Central  CAS  Article  Google Scholar 

  53. 53.

    Brown KE, Amoils S, Horn JM, et al. Expression of alpha- and beta-globin genes occurs within different nuclear domains in haemopoietic cells.Nat Cell Biol. 2001; 3: 602–606.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Flint J, Tufarelli C, Peden J, et al. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha-globin cluster.Hum Mol Genet. 2001; 10: 371–382.

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Anguita E, Johnson CA,Wood WG,Turner BM, Higgs DR. Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster.Proc Natl Acad Sci U S A. 2001; 98: 12114–12119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. 56.

    Tufarelli C, Frischauf AM, Hardison R, Flint J, Higgs DR. Characterization of a widely expressed gene (LUC7-LIKE; LUC7L) defining the centromeric boundary of the human alpha-globin domain.Genomics. 2001; 71: 307–314.

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Nicholls RD, Fischel-Ghodsian N, Higgs DR. Recombination at the human alpha-globin gene cluster: sequence features and topological constraints.Cell. 1987; 49: 369–378.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Barbour VM, Tufarelli C, Sharpe JA, et al. Alpha-thalassemia resulting from a negative chromosomal position effect.Blood. 2000; 96: 800–807.

    CAS  PubMed  Google Scholar 

  59. 59.

    Vyas P, Vickers MA, Picketts DJ, Higgs DR. Conservation of position and sequence of a novel, widely expressed gene containing the major human alpha-globin regulatory element.Genomics. 1995; 29: 679–689.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Bernet A, Sabatier S, Picketts DJ, et al. Targeted inactivation of the major positive regulatory element (HS-40) of the human alpha-globin gene locus.Blood. 1995; 86: 1202–1211.

    CAS  PubMed  Google Scholar 

  61. 61.

    Vickers MA,Vyas P, Harris PC, Simmons DL, Higgs DR. Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere.Proc Natl Acad Sci U S A. 1993; 90: 3437–3441.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. 62.

    Dillon N, Sabbattini P. Functional gene expression domains: defining the functional unit of eukaryotic gene regulation.Bioessays. 2000; 22: 657–665.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Goldman MA,Holmquist GP, Gray MC, Caston LA, Nag A. Replication timing of genes and middle repetitive sequences.Science. 1984; 224: 686–692.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Gibbons RJ, Higgs DR. Molecular-clinical spectrum of the ATR-X syndrome.Am J Med Genet. 2000; 97: 204–212.

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Gibbons RJ, McDowell TL, Raman S, et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation.Nat Genet. 2000; 24: 368–371.

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Pennisi E. Behind the scenes of gene expression.Science. 2001; 293: 1064–1067.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhang Hua-bing or Liu De-Pei or Liang Chih-Chuan.

About this article

Cite this article

Hua-bing, Z., De-Pei, L. & Chih-Chuan, L. The Control of Expression of the α-Globin Gene Cluster. Int J Hematol 76, 420–426 (2002). https://doi.org/10.1007/BF02982807

Download citation

Key words

  • α-Globin gene cluster
  • Control of expression
  • HS-40
  • Developmental control
  • Chromosomal environment