International Journal of Hematology

, Volume 76, Issue 3, pp 238–243 | Cite as

Expression and Affinity of Homing-Related Molecules on Steady-State Adult and Neonate Human PB CD34+ Cells and Their SRC Activity

  • Fumiya Hirayama
  • Maki Yano
  • Mitsunobu Tanaka
  • Kazuta Yasui
  • Yoshinori Horie
  • Kayoko Matsumoto
  • Nobuo Nagao
  • Yoshihiko Tani
Review Article


Although the vast majority of hematopoietic progenitor cells (HPCs) reside within the bone marrow (BM), a small number of HPCs also continuously circulate in the peripheral blood (PB). The examination of the fate of blood-borne HPCs in parabiotic mice, which are surgically conjoined and share a common circulation, recently revealed that steady-state PB HPCs play a physiological role in, at least, the functional re-engraftment of unconditioned BM. To assess the possibility that human HPCs have a similar function, in this study we examined the expression level and affinity of the homing-related molecules, as well as the SCID mouse reconstituting cell (SRC) activity of human PB CD34+ cells, and compared adults with neonates.There was no remarkable difference between adults and neonates in the expression of E- and/or P-selectin ligands by PB CD34+ cells or in these cells’ affinity to VCAM-1. In contrast, the expression level of CXCR4 on PB CD34+ cells was much lower in adults than in neonates. Adult cells also showed a much lower SRC activity than neonates.These results suggest that human PB HPCs may contribute to steady-state hematopoiesis in the BM of neonates to some extent, but not so much in adults.

Key words

Steady-state PB Homing CXCR4 SRC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis.Science. 1997;275: 964–967.CrossRefPubMedGoogle Scholar
  2. 2.
    Masuda H, Kalka C, Asahara T. Endothelial progenitor cells for regeneration.Hum Cell. 2000;13:153–160.PubMedGoogle Scholar
  3. 3.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.Nat Med. 2001;7:430–436.CrossRefPubMedGoogle Scholar
  4. 4.
    Wright DE,Wagers AJ, Gulati AP, Johnson FL,Weissman IL. Physiological migration of hematopoietic stem cell and progenitor cells.Science. 2001;294:1933–1936.CrossRefPubMedGoogle Scholar
  5. 5.
    Zannettino ACW, Berndt MC, Butcher C, Butcher EC,Vadas MA, Simmons PJ. Primitive human hematopoietic progenitors adhere to P-selectin (CD62P).Blood. 1995;85:3466–3477.PubMedGoogle Scholar
  6. 6.
    Asa D, Raycroft L, Ma L, et al. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins.J Biol Chem. 1995;270:11662–11670.CrossRefPubMedGoogle Scholar
  7. 7.
    Spertini O, Cordey A-S, Monai N, Giuffre L, Schapira M. P-selectin glycoprotein ligand 1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells.J Cell Biol. 1996;135:523–531.CrossRefPubMedGoogle Scholar
  8. 8.
    Snapp KR, Wagers AJ, Craig R, Stoolman LM, Kansas GS. P-selectin glycoprotein ligand-1 is essential for adhesion to P-selectin but not E-selectin in stably transfected hematopoietic cell lines.Blood. 1997;89:896–901.PubMedGoogle Scholar
  9. 9.
    Naiyer AJ, Jo D-Y, Ahn J, et al. Stromal derived factor-1 induced chemokinesis of cord blood CD34+ cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin.Blood. 1999;94:4011–4019.PubMedGoogle Scholar
  10. 10.
    Frenette PS, Subbarao S, Mazo IB, von Andrian UH, Wagner DD. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow.Proc Natl Acad Sci U S A. 1998;95:14423–14428.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Greenberg AW, Kerr WG, Hammer DA. Relationship between selectin-mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development.Blood. 2000; 95:478–486.PubMedGoogle Scholar
  12. 12.
    Mazo IB, Gutierrez-Ramos J-C, Frenette PS, Hynes RO, Wagner DD, von Andrian UH. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1.J Exp Med. 1998; 188:465–474.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM. Molecular pathways in bone marrow homing: dominant role of α;4β1 over β2-integrins and selectins.Blood. 2001;98: 2403–2411.CrossRefPubMedGoogle Scholar
  14. 14.
    Broxmeyer HE. Regulation of hematopoiesis by chemokine family members.Int J Hematol. 2001;74:9–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Nagasawa T. A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis.Int J Hematol. 2000;72:408–411.PubMedGoogle Scholar
  16. 16.
    Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood.J Exp Med. 1997;185:111–120.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kawabata K, Ujikawa M, Egawa T, et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution.Proc Natl Acad Sci U S A. 1999;96:5663–5667.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Peled A,Grabovsky V, Habler L,et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow.J Clin Invest. 1999;104:1199–1211.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice.Blood. 2000;95:3289–3296.PubMedGoogle Scholar
  20. 20.
    Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, et al. Chemokine stromal cell-derived factor-1α modulates VLA-4 inte-grin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells.Exp Hematol. 2001;29: 345–355.CrossRefPubMedGoogle Scholar
  21. 21.
    Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine srtomal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1.Blood.2001;97:346–351.CrossRefPubMedGoogle Scholar
  22. 22.
    Chan JR, Hyduk SJ, Cybulsky MI. Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration.J Exp Med. 2001;193:1149–1158.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions.Nature. 1991;352:438–441.CrossRefPubMedGoogle Scholar
  24. 24.
    Miyake K, Hasunuma Y, Yagita H, Kimoto M. Requirement for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migration beneath stromal cells in culture.J Cell Biol. 1992;119: 653–662.CrossRefPubMedGoogle Scholar
  25. 25.
    Papayannopoulou T, Nakamoto B. Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin.Proc Natl Acad Sci U S A. 1993;90:9374–9378.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Leavesley DI, Oliver JM, Swart BW, Berndt MC, Haylock DN, Simmons PJ. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen-4 integrin of human CD34+ hemopoietic progenitor cells.J Immunol.1994;153:4673–4683.PubMedGoogle Scholar
  27. 27.
    Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen.Proc Natl Acad Sci U S A. 1995;92:9647–9651.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hirsch E, Iglesias A, Potocnik AJ Hartmann U, Fassler R. Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins.Nature. 1996;380: 171–175.CrossRefPubMedGoogle Scholar
  29. 29.
    Koyanagi Y, Tanaka Y, Kira J, et al. Primary human immunodeficiency virus type 1 viremia and central nervous system invasion in a novel hu-PBL-immunodeficient mouse strain.J Virol. 1997;71: 2417–2424.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ueda T, Yoshino H, Kobayashi K, et al. Hematopoietic repopulating ability of cord blood CD34+ cells in NOD/Shi-scid mice.Stem Cells. 2000;18:204–213.CrossRefPubMedGoogle Scholar
  31. 31.
    Sako D, Chang XJ, Barone KM, et al. Expression cloning of a functional glycoprotein ligand for P-selectin.Cell. 1993;75:1179–1186.CrossRefPubMedGoogle Scholar
  32. 32.
    Moore KL, Eaton SF, Lyons DE, Lichenstein HS, Cummings RD, McEver RP. The P-selectin glycoprotein ligand from human neutrophils displays sialylated,fucosylated, O-linked poly-N-acetyllac-tosamine.J Biol Chem. 1994;269:23318–23327.PubMedGoogle Scholar
  33. 33.
    Goetz DJ, Greif DM, Ding H, et al. Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin.J Cell Biol. 1997; 137:509–519.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Norman KE, Katopodis AG, Thoma G, et al. P-selectin glycoprotein ligand-1 supports rolling on E- and P-selectin in vivo.Blood. 2000;96:3585–3591.PubMedGoogle Scholar
  35. 35.
    Hirata T, Merrill-Skoloff G, Aab M, Yang J, Furie BC, Furie B. P-selectin glycoprotein ligand 1 (PSGL-1) is a physiological ligand for E-selectin in mediating T helper 1 lymphocyte migration.J Exp Med. 2000;192:1669–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Voermans C, Gerritsen WR, von dem Borne AE, van der Schoot CE. Increased migration of cord blood-derived CD34+ cells, as compared to bone marrow and mobilized peripheral blood CD34+ cells across uncoated or fibronectin-coated filters.Exp Hematol.1999;27:1806–1814.CrossRefPubMedGoogle Scholar
  37. 37.
    Gazitt Y. Immunologic profiles of effector cells and peripheral blood stem cells mobilized with different hematopoietic growth factors.Stem Cells. 2000;18:390–398.CrossRefPubMedGoogle Scholar
  38. 38.
    Lataillade J-J, Clay D, Dupuy C, et al. Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival.Blood. 2000;95:756–768.PubMedGoogle Scholar
  39. 39.
    Chen LL,Whitty A, Lobb RR, Adams SP, Pepinsky B. Multiple activation states of integrin α4β1 detected through their different affinities for a small molecule ligand.J Biol Chem. 1999;274:13167–13175.CrossRefPubMedGoogle Scholar
  40. 40.
    Hemler ME, Sanchez-Madrid F, Flotte TJ, et al. Glycoproteins of 210,000 and 130,000 m.w on activated T cells: cell distribution and antigenic relation to components on resting cells and T cell lines.J Immunol. 1984;132:3011–3018.PubMedGoogle Scholar
  41. 41.
    Kovach NL, Carlos TM,Yee E, Harlan JM. A monoclonal antibody to β1 integrin (CD29) stimulates VLA-dependent adherence of leukocytes to human umbilical vein endothelial cells and matrix components.J Cell Biol. 1992;116:499–509.CrossRefPubMedGoogle Scholar
  42. 42.
    Faull RJ, Wang J, Leavesley DI, et al. A novel activating anti-β1 integrin monoclonal antibody binds to the cysteine-rich repeats in the β1 chain.J Biol Chem. 1996;271:25099–25106.CrossRefPubMedGoogle Scholar
  43. 43.
    Mould AP, Garratt AN, Askari JA, Akiyama SK, Humpheries MJ. Identification of a novel anti-integrin monoclonal antibody that recognizes a ligand-induced binding site epitope on the β1 subunit.FEBS Lett 1995;363:118–112.CrossRefPubMedGoogle Scholar
  44. 44.
    Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4.Science. 1999;283:845–848.CrossRefPubMedGoogle Scholar
  45. 45.
    Rosu-Myles M, Gallacher L, Murdoch B, et al.The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression.Proc Natl Acad Sci U S A. 2000;97:14626–14631.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Fumiya Hirayama
    • 1
  • Maki Yano
    • 1
  • Mitsunobu Tanaka
    • 1
  • Kazuta Yasui
    • 1
  • Yoshinori Horie
    • 1
  • Kayoko Matsumoto
    • 1
  • Nobuo Nagao
    • 1
  • Yoshihiko Tani
    • 1
  1. 1.Osaka Red Cross Blood CenterJoto-ku, OsakaJapan

Personalised recommendations