Advertisement

International Journal of Hematology

, Volume 76, Issue 3, pp 229–237 | Cite as

Long-term Feto-Maternal Microchimerism: Nature’s Hidden Clue for Alternative Donor Hematopoietic Cell Transplantation?

Review Article

Abstract

During pregnancy, fetal hematopoietic cells carrying paternal human leukocyte antigens (HLA) migrate into maternal circulation, and, vice versa, maternal nucleated cells can be detected in fetal organs and umbilical cord blood, indicating the presence of bidirectional cell traffic between mother and fetus. By taking advantage of fluorescence in-situ hybridization or polymerase chain reaction-based techniques, researchers recently found that postpartum persistence of such reciprocal chimerism was common among healthy individuals and may sometimes cause tissue chimerism.Although the biological significance of long-lasting feto-maternal microchimerism is unknown, a number of investigations have suggested its association with the development of “autoimmune” diseases such as systemic sclerosis. However, the very common presence of feto-maternal microchimerism among subjects without any autoimmune attack may allow us the more appealing hypothesis that it is an indicator for the acquired immunological hyporesponsiveness to noninherited maternal or fetal HLA antigens. An offspring’s tolerance to noninherited maternal antigens has been clinically suggested by the retrospective analysis of renal transplantations or haploidentical hematopoietic stem cell transplantations, and whether postpartum mothers can tolerate paternally derived fetal antigens is an intriguing question. Although an exact linkage between microchimerism and transplantation tolerance is yet to be elucidated, long-term acceptance of a recipient’s cell in the donor may have a favorable effect on preventing the development of severe graft-versus-host disease, and the donor cell microchimerism in the recipient might facilitate the graft acceptance. If this concept holds true, HLA-mismatched hematopoietic stem cell transplantation would be more feasible among haploidentical family members mutually linked with feto-maternal microchimerism. Further studies are warranted to investigate the potential role of feto-maternal microchimerism in human transplantation medicine.

Key words

Feto-maternal microchimerism Noninherited maternal antigens Transplantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Medawar PB. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates.Symp Soc Exp Biol. 1954;7:320–338.Google Scholar
  2. 2.
    Burnet FM. The Nobel Lectures in Immunology: Immunologic recognition of self.Scand J Immunol. 1991;33:3–13.PubMedGoogle Scholar
  3. 3.
    Desai RG, Creger WP. Maternofetal passage of leukocytes and platelets in man.Blood. 1963;30:665–673.Google Scholar
  4. 4.
    Zarou DM, Lichtman HC, Hellman LM. The transmission of chromium-51 tagged maternal erythrocytes from mother to fetus.Am J Obstet Gynecol. 1964;88:565–571.PubMedGoogle Scholar
  5. 5.
    Tuffrey M, Bishun NP, Barnes RD. Porosity of the mouse placenta to maternal cells.Nature. 1969;221:1029–1030.PubMedGoogle Scholar
  6. 6.
    Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer.Lancet. 1969;i:1119–1122.Google Scholar
  7. 7.
    Barnes RD, Holliday J. The morphological identity of maternal cells in newborn mice.Blood. 1970;36:480–490.PubMedGoogle Scholar
  8. 8.
    Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins.Science. 1945;102:400–401.PubMedGoogle Scholar
  9. 9.
    Collins GD, Chrest FJ, Adler WH. Maternal cell traffic in allogeneic embryos.J Reprod Immunol. 1980;2:163–172.Google Scholar
  10. 10.
    Viëtor HE, Hamel BCJ, van Bree SPMJ, et al. Immunological tolerance in an HLA non-identical chimeric twins.Human Immunol. 2000;61:190–192.Google Scholar
  11. 11.
    Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle.Heredity. 1951;5:379–397.Google Scholar
  12. 12.
    Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells.Nature. 1953;172:603–606.PubMedGoogle Scholar
  13. 13.
    Owen RD, Wood HR, Foord AG, Sturgeon P, Baldwin LG. Evidence for actively acquired tolerance to Rh antigens.Proc Natl Acad Sci U S A. 1954;40:420–424.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tanaka A, Lindor K, Ansari A, Gershwin ME. Fetal microchimerism in the mother: immunologic implications.Liver Transplant. 2000;6:138–143.Google Scholar
  15. 15.
    Atractingi S, Uzan S, Dausset J, Carosella ED. Microchimerism in human diseases.Immunol Today. 2000;21:116–118.Google Scholar
  16. 16.
    Nelson JL. Pregnancy and microchimerism in autoimmune disease: protector or insurgent?Arthritis Rheum. 2002;46:291–297.PubMedGoogle Scholar
  17. 17.
    Nelson JL. Microchimerism: incidental byproduct of pregnancy or active participant in human health?Trend Mol Med. 2002;8: 109–113.Google Scholar
  18. 18.
    Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW. Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study.Lancet. 2001;358:2034–2038.PubMedGoogle Scholar
  19. 19.
    Schröder J, Tiilikainen A, de la Chapelle A. Fetal leukocytes in the maternal circulation after delivery, I: cytological aspects.Transplantation. 1974;17:364–354.Google Scholar
  20. 20.
    Tiilikainen A, Schröder J, de la Chapelle A. Fetal leukocytes in the maternal circulation after delivery, II: masking of HL-A antigens.Transplantation. 1974;17:355–360.PubMedGoogle Scholar
  21. 21.
    Liégeois A, Escourrou J, Ouvré E, Charreire J. Microchimerism: a stable state of low-ratio proliferation of allogeneic bone marrow.Transplant Proc. 1977;9:273–276.PubMedGoogle Scholar
  22. 22.
    Liégeois A, Gaillard MD, Ouvré E, Lewis D. Microchimerism in pregnant mice.Transplant Proc. 1981;13:1250–1252.PubMedGoogle Scholar
  23. 23.
    Herzenberg LA, Bianchi DW, Schröder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting.Proc Natl Acad Sci U S A. 1979;76:1453–1455.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Covone AE, Mutton D, Johnson PM, Adinolfi M. Trophoblast cells in peripheral blood of pregnant women.Lancet. 1984;ii:841–843.Google Scholar
  25. 25.
    Covone AE, Kozma R, Johnson PM, Latt SA, Adinolfi M. Analysis of peripheral blood maternal blood samples for the presence of placenta-derived cells using Y-specific probes and McAb H315.Prenat Diagn. 1988;8:591–607.PubMedGoogle Scholar
  26. 26.
    Hunzinker RD, Gambel P, Wegmann TG. Placenta as a selective barrier to cellular traffic.J Immunol. 1984;133:667–671.Google Scholar
  27. 27.
    Kadowaki J, Thompson RI, Zuelzer WW, Woolley PV Jr, Brough AJ, Gruber D. XX-XY lymphoid chimaerism in congenital immunological deficiency syndrome with thymic alymphoplasia.Lancet. 1965;2:1152–1156.PubMedGoogle Scholar
  28. 28.
    Pollack MS, Kapoor N, Sorell M, et al. DR-positive maternal engrafted T cells in a severe combined immunodeficiency patient without graft-versus-host disease.Transplantation. 1980;30: 331–334.PubMedGoogle Scholar
  29. 29.
    Pollack MS, Kirkpatrick D, Kapoor N, Dupont B, O’Reilly RJ. Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency.N Engl J Med. 1982;307:662–666.PubMedGoogle Scholar
  30. 30.
    Geha RS, Reinherz E. Identification of circulating maternal T and B lymphocytes in uncomplicated severe combined immunodeficiency by HLA typing of subpopulations of T cells separated by the fluorescence-activated cell sorter and of Epstein Barr virus- derived B cell lines.J Immunol. 1983;130:2493–2495.PubMedGoogle Scholar
  31. 31.
    Müller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients.Blood. 2001;98: 1847–1851.PubMedGoogle Scholar
  32. 32.
    Adinolfi M, Camporese C, Carr T. Gene amplification to detect fetal nucleated cells in pregnant women.Lancet 1989;ii:328–329.Google Scholar
  33. 33.
    Lo YM, Patel P, Wainscoat JS, Sampietro M, Gillmer MD, Fleming KA. Prenatal sex determination by DNA amplification from maternal peripheral blood.Lancet. 1989;ii:1363–1365.Google Scholar
  34. 34.
    Bianchi DW, Flint AF, Pizzimenti MF, Knoll JHM, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood.Proc Natl Acad Sci U S A. 1990;87:3279–3283.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nakagome Y, Nagafuchi S, Nakahori Y. Prenatal sex determination.Lancet. 1990;335:291.PubMedGoogle Scholar
  36. 36.
    Lo YMD, Patel P, Sampietro M, Gillmer MDG, Fleming KA,Wainscoat JS. Detection of single-copy fetal DNA sequence from maternal blood.Lancet. 1990;335:1463–1464.PubMedGoogle Scholar
  37. 37.
    Mueller UW, Hawes CS, Wright AE, et al. Isolation of fetal trophoblast cells from peripheral blood of pregnant women.Lancet. 1990;336:197–200.PubMedGoogle Scholar
  38. 38.
    Wachtel S, Elias S, Price G, et al. Fetal cells in the maternal circulation: isolation by multiparameter flow cytometry and confirmation by polymerase chain reaction.Hum Reprod. 1991;6:1466–1469.PubMedGoogle Scholar
  39. 39.
    Bianchi DW. Fetal cells in the mother: from genetic diagnosis to diseases associated with fetal cell microchimerism.Eur J Obstet Gynecol Reprod Biol. 2000;92:103–108.PubMedGoogle Scholar
  40. 40.
    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum.Proc Natl Acad Sci U S A. 1996;93:705–708.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Evans PC, Lambert N, Maloney S, Furst DER, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma.Blood. 1999;93:2033–2037.PubMedGoogle Scholar
  42. 42.
    Gluckman E, Broxmeyer H, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi anemia by means of umbilical cord blood from an HLA identical sibling.N Engl J Med. 1989; 321:1174–1178.PubMedGoogle Scholar
  43. 43.
    Linch DC, Brent L. Marrow transplantation: can cord blood be used?Nature. 1989;340:676.PubMedGoogle Scholar
  44. 44.
    Nathan DG. The beneficence of neonatal hematopoiesis.N Engl J Med. 1989;321:1190–1191.PubMedGoogle Scholar
  45. 45.
    Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution.Blood. 1993;81:1679–1690.PubMedGoogle Scholar
  46. 46.
    Socié G, Gluckman E, Carosella E, Brossard Y, Lafon C, Brison O. Search for maternal cells in human umbilical cord blood by polymerase chain reaction amplification of two minisatellite sequences.Blood. 1994;83;340–344.PubMedGoogle Scholar
  47. 47.
    Hall JM, Lingenfelter P, Adams SL, Lasser D, Hansen JA, Bean MA. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization.Blood. 1995;86:2829–2832.PubMedGoogle Scholar
  48. 48.
    Lo YMD, Lo ESF, Watson N, et al. Two-way cell traffic between mother and fetus: biologic and clinical implications.Blood. 1996;88: 4390–4395.PubMedGoogle Scholar
  49. 49.
    Petit T, Gluckman E, Carosella E, Rossard Y, Brison O, Socié G. A highly sensitive polymerase chain reaction method reveals the ubiquitous presence of maternal cells in human umbilical cord blood.Exp Hematol. 1995;23:1601–1605.PubMedGoogle Scholar
  50. 50.
    Shimamura M, Ohta S, Suzuki R, Yamazaki K. Transmission of maternal blood cells to the fetus during pregnancy: detection in mouse neonatal spleen by immunofluorescence flow cytometry and polymerase chain reaction.Blood. 1994;83:926–930.PubMedGoogle Scholar
  51. 51.
    Piotrowski P, Croy BA. Maternal cells are widely distributed in murine fetuses in utero.Biol Reprod. 1996;54:1103–1110.PubMedGoogle Scholar
  52. 52.
    Maloney S, Smith A, Furst DE, et al. Microchimerism of maternal origin persists into adult life.J Clin Invest. 1999;104:41–47.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Nierhoff D, Horvath HC, Mytilineos J, et al. Microchimerism in bone marrow-derived CD34+ cells of patients after liver transplantation.Blood. 2000;96:763–767.PubMedGoogle Scholar
  54. 54.
    Lambert NC, Evans PC, Hashizumi TL, et al. Persistent fetal micro-chimerism in T lymphocytes is associated with HLA-DQA1*0501: implications in autoimmunity.J Immunol. 2000;164:5545–5548.PubMedGoogle Scholar
  55. 55.
    Lo YMD, Lau TK, Chan LYS, Leung TN, Chang AMZ. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA.Clin Chem. 2000;46:1301–1309.PubMedGoogle Scholar
  56. 56.
    Matzinger P. Tolerance, danger, and the extended family.Annu Rev Immunol. 1994;12:991–1045.PubMedGoogle Scholar
  57. 57.
    Matzinger P. The danger model: the renewed sense of self.Science. 2002;296:3001–3005.Google Scholar
  58. 58.
    Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M. Cell migration, chimerism, and graft acceptance.Lancet. 1992;339: 1579–1582.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Thomson AW, Lu L, Murase N, Demetris AJ, Rao AS, Starzl TE. Microchimerism, dendritic cell progenitors and transplantation tolerance.Stem Cells. 1995;13:622–639.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Burlingham WJ, Grailer AP, Fechner JH Jr, et al. Microchimerism linked to cytotoxic T lymphocyte functional unresponsiveness (clonal anergy) in a tolerant renal transplant recipient.Transplantaion. 1995;59:1147–1155.Google Scholar
  61. 61.
    Yano Y, Hara M, Miyahara T, et al. Microchimeric cells from the peripheral blood associated with cardiac grafts are bone marrow derived, long-lived and maintain acquired tolerance to minor histocompatibility antigen H-Y.Transplantation. 2001;71:1456–1462.PubMedGoogle Scholar
  62. 62.
    Viëtor HE, Hallensleben E, van Bree SPMJ, et al. Survival of donor cells 25 years after intrauterine transfusion.Blood. 2000;95: 2709–2714.PubMedGoogle Scholar
  63. 63.
    Lee TH, Paglieroni T, Ohto H, Holland PV, Busch MP. Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients.Blood. 1999;93:3127–3139.PubMedGoogle Scholar
  64. 64.
    Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells.J Exp Med. 2000;191:411–416.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation—friend or foe?Immunity. 2001;14:357–368.PubMedGoogle Scholar
  66. 66.
    Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells.Annu Rev Immunol. 2000;18:767–811.PubMedGoogle Scholar
  67. 67.
    Jenkinson EJ, Jhittay P, Kingston R, et al. Studies of the role of the thymic environment in the induction of tolerance to MHC antigens.Transplantation. 1985;39:331–333.PubMedGoogle Scholar
  68. 68.
    Matzinger P, Guerder S. Does T-cell tolerance require a dedicated antigen-presenting cell?Nature. 1989;338:74–76.PubMedGoogle Scholar
  69. 69.
    Roberts JL, Sharrow SO, Singer A. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivity.J Exp Med. 1990;171:935–940.PubMedGoogle Scholar
  70. 70.
    Steinman RM, Pack M, Inaba K. Dendritic cells in the T-cell areas of lymphoid organs.Immunol Rev. 1997;156:25–37.PubMedGoogle Scholar
  71. 71.
    O’Connell PJ, Li W, Wang Z, Specht SM, Logar AJ, Thomson AW. Immature and mature CD8α dendritic cells prolong the survival of vascularized heart allografts.J Immunol. 2002;168:143–154.PubMedGoogle Scholar
  72. 72.
    Hawiger D, Inaba K, Dorsett Y, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo.J Exp Med. 2001;194:769–779.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sprent J, Webb SR. Intrathymic and extrathymic clonal deletion of T cells.Curr Opin Immunol. 1995;7:196–205.PubMedGoogle Scholar
  74. 74.
    Wood K, Sachs DH. Chimerism and transplantation tolerance: cause and effect.Immunol Today. 1996;17:584–587.PubMedGoogle Scholar
  75. 75.
    Anderson CC, Matzinger P. Immunity or tolerance: opposite outcomes of microchimerism from skin grafts.Nat Med. 2001;7:80–87.PubMedGoogle Scholar
  76. 76.
    Sykes M. Mixed chimerism and transplant tolerance.Immunity. 2001;14:417–424.PubMedGoogle Scholar
  77. 77.
    Urbaniak SJ, Greiss MA. RhD haemolytic disease of the fetus and newborn.Blood Rev. 2000;14:44–61.PubMedGoogle Scholar
  78. 78.
    Uhrynowska M, Niznikowska-Marks M, Zupanska B. Neonatal and maternal thrombocytopenia: incidence and immune background.Eur J Hematol. 2000;64:42–46.Google Scholar
  79. 79.
    Rothenberger S. Neonatal alloimmune thrombocytopenia.Ther Apher. 2002;6:32–35.PubMedGoogle Scholar
  80. 80.
    Jazwinska EC, Kilpatrick DC, Smart GE, Liston WA. Feto-maternal HLA compatibility does not have a major influence on human pregnancy except for lymphocytotoxin production.Clin Exp Immunol. 1987;69:116–122.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Coulam CB. Immunologic tests in the evaluation of reproductive disorders: a critical review.Am J Obstet Gynecol. 1992;167: 1844–1851.PubMedGoogle Scholar
  82. 82.
    Jansen MW, Korver-Hakkennes K, van Leenen D, et al. Significantly higher number of fetal cells in the maternal circulation of women with pre-eclampsia.Prenat Diagn. 2001;21:1022–1026.PubMedGoogle Scholar
  83. 83.
    Steinborn A, Sohn C, Sayehli C, Niederhut A, Schmitt E, Kauf-mann M. Preeclampsia, a pregnancy-specific disease, is associated with fetal monocyte activation.Clin Immunol. 2001;100: 305–313.PubMedGoogle Scholar
  84. 84.
    Aractingi S, Berkane N, Bertheau P, et al. Fetal DNA in skin of polymorphic eruptions of pregnancy.Lancet. 1998;352:1898–1901.PubMedGoogle Scholar
  85. 85.
    Nelson JL, Furst DE, Maloney S, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma.Lancet. 1998;351:559–562.PubMedGoogle Scholar
  86. 86.
    Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis.N Engl J Med. 1998;338:1186–1191.PubMedGoogle Scholar
  87. 87.
    Johnson KL, Nelson JL, Furst DE, et al. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis.Arthritis Rheumat. 2001;44:1848–1854.PubMedGoogle Scholar
  88. 88.
    Corpechot C, Barbu V, Chazouilleres O, Poupon R. Fetal microchimerism in primary biliary cirrhosis.J Hepatol. 2000;33:696–700.PubMedGoogle Scholar
  89. 89.
    Fanning PA, Jonsson JR, Clouston AD. Detection of male DNA in the liver of female patients with primary biliary cirrhosis.J Hepatol. 200;33:690–695.PubMedGoogle Scholar
  90. 90.
    Johnson KL, McAlindon TE, Mulcahy E, Bianchi DW. Microchimerism in a female patient with systemic lupus erythematosus.Arthritis Rheumat. 2001;44:2107–2111.PubMedGoogle Scholar
  91. 91.
    Imaizumi M, Pritsker A, Unger P, Davies TF. Intrathyroid fetal microchimerism in pregnancy and postpartum.Endocrinology. 2002;143:247–253.PubMedGoogle Scholar
  92. 92.
    Artlett CM, Ramos R, Jiminez SA, Patterson K, Miller FW, Rider LG. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies: Childhood Myositis Heterogeneity Collaborative Group.Lancet. 2000;356:2155–2156.PubMedGoogle Scholar
  93. 93.
    Reed AM, Picornell YJ, Harwood A, Kredich DW. Chimerism in children with juvenile dermatomyositis.Lancet. 2000;356: 2156–2157.PubMedGoogle Scholar
  94. 94.
    Tokita K, Terasaki P, Maruya E, Saji H. Tumour regression following stem cell infusion from daughter to microchimeric mother.Lancet. 2001;358:2047–2048.PubMedPubMedCentralGoogle Scholar
  95. 95.
    van Rood JJ, Claas F. Both self and non-inherited maternal HLA antigens influence the immune response.Immunol Today. 2000;21: 269–273.PubMedGoogle Scholar
  96. 96.
    van Rood JJ, Claas F. Non-inherited maternal HLA antigens: a proposal to elucidate their role in the immune response.Hum Immunol. 2000;61:1390–1394.PubMedGoogle Scholar
  97. 97.
    Claas FH, Gijbels Y, van der Velden-de Munck J, van Rood JJ. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life.Science. 1988;241:1815–1817.PubMedGoogle Scholar
  98. 98.
    van Rood JJ, Claas FHJ. The influence of allogeneic cells on the human T and B cell repertoire.Science. 1990;248:1388–1393.PubMedGoogle Scholar
  99. 99.
    Burlingham WJ, Grailer AP, Heisey DM, et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors.N Engl J Med. 1998;339: 1657–1664.PubMedGoogle Scholar
  100. 100.
    Smits JMA, Claas FHJ, van Houwelingen HC, Persijin GG. Do noninherited maternal antigens (NIMA) enhance renal allograft survival?Transpl Int. 1998;11:82–88.PubMedGoogle Scholar
  101. 101.
    Opelz G. Analysis of the “NIMA effect” in renal transplantation. In: Terasaki PI, ed.Clinical Transplants. Los Angeles, Calif: UCLA Tissue Typing Laboratory; 1990:63–67.Google Scholar
  102. 102.
    Tamaki S, Ichinohe T, Matsuo K, Hamajima N, Hirabayashi N, Dohy H. Superior survival of blood and marrow stem cell recipients given maternal grafts over recipietns given paternal grafts.Bone Marrow Transplant. 2001;28:375–380.PubMedPubMedCentralGoogle Scholar
  103. 103.
    van Rood JJ, Loberiza FR Jr, Zhang MJ, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling.Blood. 2002;99:1572–1577.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Ichinohe T, Tamaki S, Watanabe A, Maruya E, Uchiyama T, Saji H. Feasibility of non-T-cell-depleted blood and marrow transplantation between haploidentical family members linked with long-term feto-maternal microchimerism.Blood. 2001;98:669a.Google Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  1. 1.Department of Hematology/OncologyGraduate School of Medicine, Kyoto UniversityJapan
  2. 2.NPO HLA LaboratoryKyotoJapan

Personalised recommendations