Skip to main content
Log in

Bcr-Abl is a “Molecular Switch” for the Decision for Growth and Differentiation in Hematopoietic Stem Cells

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a clonal disorder originating in the pluripotent hematopoietic stem cell (HSC), the hallmark of which is the constitutively activated p210-type of Bcr-Abl tyrosine kinase protein. Studies in recent years have helped us to understand the molecular processes involved in the initiation and progression of CML. Although a great amount of knowledge has been accumulated, the effect of Bcr-Abl on the HSC is still unclear. We have developed an in vitro system that mirrors the chronic phase of CML with a combination of in vitro embryonic stem cell differentiation and tetracycline-inducible Bcr-Abl expression. Enforced Bcr-Abl expression was sufficient to increase the number of both multilineage progenitors and myeloid progenitors.The current system is powerful for analyzing the genetic changes in hematopoietic development. This review focuses on how Bcr-Abl affects HSCs and how Bcr-Abl expression alters the properties of HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowley JD.A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining.Nature. 1973;243:290–293.

    Article  CAS  PubMed  Google Scholar 

  2. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22.Cell. 1984;36: 93–99.

    Article  CAS  PubMed  Google Scholar 

  3. Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity.Cell. 1984;37:1035–1042.

    Article  CAS  PubMed  Google Scholar 

  4. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia.Nature. 1985;315:550–554.

    Article  CAS  PubMed  Google Scholar 

  5. Sawyers CL. Chronic myeloid leukemia.N Engl J Med. 1999;340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein R. Cytogenetics of chronic myelogenous leukemia.Semin Hematol. 1988;25:20–34.

    CAS  PubMed  Google Scholar 

  7. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia.N Engl J Med. 1999; 341:164–172.

    Article  CAS  PubMed  Google Scholar 

  8. McLaughlin J, Chianese E, Witte ON. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome.Proc Natl Acad Sci U S A. 1987;84:6558–6562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lugo TG, Pendergast A, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products.Science. 1990;247:1079–1082.

    Article  CAS  PubMed  Google Scholar 

  10. McWhirter JR, Wang JYJ. An actin-binding function contributes to transformation by the bcr-abl oncoprotein of Philadelphia chromosome-positive human leukemias.EMBO J. 1993;12:1533–1546.

    Article  CAS  Google Scholar 

  11. Wang JY. Abl tyrosine kinase in signal transduction and cell-cycle regulation.Curr Opin Genet Dev. 1993;3:35–43.

    Article  CAS  PubMed  Google Scholar 

  12. Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell. 1993;75:175–185.

    Article  CAS  PubMed  Google Scholar 

  13. Heaney C, Kolibaba K, Bhat A, et al. Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation.Blood. 1997;89:297–306.

    CAS  PubMed  Google Scholar 

  14. Salgia R, Brunkhorst B, Pisick E, et al. Increased tyrosine phos-phorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL.Oncogene. 1995;11:1149–1155.

    CAS  PubMed  Google Scholar 

  15. Tauchi T, Boswell HS, Leibowitz D, Broxmeyer HE. Coupling between p210bcr-abl and Shc and Grb2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to Ras activation pathway.J Exp Med. 1994;179:167–175.

    Article  CAS  PubMed  Google Scholar 

  16. Yamanashi Y, Baltimore D. Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok.Cell. 1997;88: 205–211.

    Article  CAS  PubMed  Google Scholar 

  17. Carpino N, Wisniewski D, Strife A, et al. p62dok: a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells.Cell. 1997;88:197–204.

    Article  CAS  PubMed  Google Scholar 

  18. Mandanas RA, Leibowitz DS, Gharehbaghi K, et al. Role of p21 RAS in p210bcr-abl transformation of murine myeloid cells.Blood. 1993;82:1838–1847.

    CAS  PubMed  Google Scholar 

  19. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. TheBcr-Ablleukemia oncogene activates Jun kinase and requires Jun for transformation.Proc Natl Acad Sci U S A. 1995;92:11746–11750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia.Oncogene. 1996;13:247–254.

    CAS  PubMed  Google Scholar 

  21. Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl.J Exp Med. 1996;183:811–820.

    Article  CAS  PubMed  Google Scholar 

  22. Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phos-phatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells.Blood. 1995;86:726–736.

    CAS  PubMed  Google Scholar 

  23. Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation.Genes Dev. 1998;12:968–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ron D, Zannini M, Lewis M, et al. A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC 24, and the human breakpoint cluster gene, bcr.New Biol. 1991;3:372–379.

    CAS  PubMed  Google Scholar 

  25. Afar DEH, Goga A, Cohen L, et al. Genetic approaches to defining signaling by the CML-associated tyrosine kinase BCR-ABL.Cold Spring Harb Symp Quant Biol. 1994;59:589–594.

    Article  CAS  PubMed  Google Scholar 

  26. McWhirter JR, Galasso DL, Wang JYJ. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins.Mol Cell Biol. 1993;13:7587–7595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON. BCR sequences essential for transformation by the BCR/ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner.Cell. 1991;66:161–171.

    Article  CAS  PubMed  Google Scholar 

  28. Maru YM, Witte ON. The BCR gene encodes a novel serine/threonine kinase activity within a single exon.Cell. 1991;67:459–468.

    Article  CAS  PubMed  Google Scholar 

  29. Pendergast AM, Gishizky ML, Havlik MH, Witte ON. SH1 domain autophosphorylation of P210 BCR/ABL is required for transformation but not growth factor-independence.Mol Cell Biol. 1993; 13:1728–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sawyers CL. Molecular studies in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors.Semin Hematol. 2001;38:15–21.

    Article  CAS  PubMed  Google Scholar 

  31. Afar DEH, Goga A, McLaughlin J, Witte O, Sawyers CL. Differential rescue of BCR-ABL point mutants with c-MYC.Science. 1994;264:424–426.

    Article  CAS  PubMed  Google Scholar 

  32. Gaiger A, Henn T, Horth E, et al. Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression.Blood. 1995;86:2371–2378.

    CAS  PubMed  Google Scholar 

  33. Wong S, Witte O. Modeling Philadelphia chromosome positive leukemias.Oncogene. 2001;20:5644–5659.

    Article  CAS  PubMed  Google Scholar 

  34. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice.Nature. 1990;344:251–253.

    Article  CAS  PubMed  Google Scholar 

  35. Voncken JW, Karrtinen V, Pattengale PK, Germeraad WTV, Groffen J, Heisterkamp N. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice.Blood. 1995;86:4603–4611.

    CAS  PubMed  Google Scholar 

  36. Honda H, Oda H, Suzuki T, et al. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcr/abl: a novel transgenic model for human Ph1-positive leukemias.Blood. 1998;91:2067–2075.

    CAS  PubMed  Google Scholar 

  37. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome.Science. 1990;247:824–830.

    Article  CAS  PubMed  Google Scholar 

  38. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice.EMBO J. 1990;9:1069–1078.

    Article  CAS  Google Scholar 

  39. Gishizky ML, Johnson-White J, Witte ON. Efficient transplantation of BCR/ABL induced chronic myelogenous leukemia-like syndrome in mice.Proc Natl Acad Sci U S A. 1993;90:3755–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia.Blood. 1998;92:3829–3840.

    CAS  PubMed  Google Scholar 

  41. Pear WS, Miller JP, Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow.Blood. 1998; 92:3780–3792.

    CAS  PubMed  Google Scholar 

  42. Kabarowski JHS, Witte O. Consequences of BCR-ABL expression within the hematopoietic stem cell in chronic myeloid leukemia.Stem Cells. 2000;18:399–408.

    Article  CAS  PubMed  Google Scholar 

  43. Fialkow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage.Am J Med. 1977; 63:125–130.

    Article  CAS  PubMed  Google Scholar 

  44. Bedi A, Zehnbauer BA, Collector MI, et al. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia.Blood. 1993;81:2898–2902.

    CAS  PubMed  Google Scholar 

  45. Wetzler M, Talpaz M, Van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R. Subcellular localization of bcr, abl, and bcr-abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation.J Clin Invest. 1993;92:1925–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maguer-Satta V, Petzer AL, Eaves AC, Eaves CJ.BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia.Blood. 1996;88:1796–1804.

    CAS  PubMed  Google Scholar 

  47. Takahashi N, Miura I, Saitoh K, Miura AB. Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization.Blood. 1998;92:4758–4763.

    CAS  PubMed  Google Scholar 

  48. Irving JA, Lennard A, Storey N, et al. Analysis of CD34 populations in mobilised peripheral blood stem cell harvests and in bone marrow by fluorescent in situ hybridisation for the bcr/abl gene fusion in patients with chronic granulocytic leukaemia.Leukemia. 1999;13:944–949.

    Article  CAS  PubMed  Google Scholar 

  49. Miyajima A, Ito Y, Kinoshita T. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.Int J Hematol. 1999; 69:137–146.

    CAS  PubMed  Google Scholar 

  50. Domen J, Cheshier SH, Weissman IL. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential.J Exp Med. 2000;191:253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Delforge M, Boogaerts MA, McGlave PB, Verfaillie CM. BCR/ ABL- CD34+HLA-DR- progenitor cells in early chronic phase, but not in more advanced phases, of chronic myelogenous leukemia are polyclonal.Blood. 1999;93:284–292.

    CAS  PubMed  Google Scholar 

  52. Gordon MY, Dazzi F, Marley SB, et al. Cell biology of CML cells.Leukemia. 1999;13(suppl):S65-S71.

    Article  PubMed  Google Scholar 

  53. Pierce A, Spooncer E, Wooley S, et al. Bcr-Abl protein tyrosine kinase activity induces a loss of p53 protein that mediates a delay in myeloid differentiation.Oncogene. 2000;19:5487–5497.

    Article  CAS  PubMed  Google Scholar 

  54. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.Proc Natl Acad Sci U S A. 1992;89:5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Era T, Witte ON. Regulated expression of P210 Bcr-Abl during embryonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate.Proc Natl Acad Sci U S A. 2000;97:1737–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Witte ON. The role of Bcr-Abl in chronic myeloid leukemia and stem cell biology.Sem Hematol. 2001;38:3–8.

    Article  CAS  Google Scholar 

  57. Evans MJ, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos.Nature. 1981;292:154–156.

    Article  CAS  PubMed  Google Scholar 

  58. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.Proc Natl Acad Sci U S A. 1981;78:7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium.J Embryol Exp Morphol. 1985;87:27–45.

    CAS  PubMed  Google Scholar 

  60. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines.Nature. 1984;309:255–256.

    Article  CAS  PubMed  Google Scholar 

  61. Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture.Development. 1991;111: 259–267.

    CAS  PubMed  Google Scholar 

  62. Nakano T, Kodama H., Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture.Science. 1994;265: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  63. Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages.Development. 1998;125:1747–1757.

    CAS  PubMed  Google Scholar 

  64. Yoshida H, Hayashi SI, Kunisada T, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene.Nature. 1990;345:442–444.

    Article  CAS  PubMed  Google Scholar 

  65. Nakano T, Kodama HH. In vitro development of primitive and definitive erythrocytes from different precursors.Science. 1996;272: 722–724.

    Article  CAS  PubMed  Google Scholar 

  66. Era T, Takagi T, Takahashi T, Bories JC, Nakano T. Characterization of hematopoietic lineage-specific gene expression by ES cell in vitro differentiation induction system.Blood. 2000;95:870–878.

    CAS  PubMed  Google Scholar 

  67. Era T, Takahashi T, Sakai K, Kawamura K, Nakano T. Thrombopoietin enhances proliferation and differentiation of murine yolk sac erythroid progenitors.Blood. 1997;89:1207–1213.

    CAS  PubMed  Google Scholar 

  68. Baron U, Gossen M, Bujard H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential.Nucleic Acids Res. 1997;25:2723–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector.Gene. 1991;108:193–199.

    Article  CAS  PubMed  Google Scholar 

  70. Moore MA, Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo.Br J Haematol. 1970;18:279–296.

    Article  CAS  PubMed  Google Scholar 

  71. Godin I, Dieterlen-Lievre F, Cumano A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus.Proc Natl Acad Sci U S A. 1995;92:773–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region.Cell. 1996;86:897–906.

    Article  CAS  PubMed  Google Scholar 

  73. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac.Immunity. 1997;7:335–344.

    Article  CAS  PubMed  Google Scholar 

  74. Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis.Nature. 1997; 386:488–493.

    Article  CAS  PubMed  Google Scholar 

  75. Muller AM, Dzierzak EA. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients.Development. 1993;118:1343–1351.

    CAS  PubMed  Google Scholar 

  76. Matsuoka S, Tsuji K, Hisakawa H, et al. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells.Blood. 2001;98:6–12.

    Article  CAS  PubMed  Google Scholar 

  77. Perlingeiro RC, Kyba M, Daley GQ. Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential.Development. 2001;128:4597–4604.

    CAS  PubMed  Google Scholar 

  78. Snow JW, Abraham N, Ma MC, Abbey NW, Herndier B, Goldsmith MA. STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells.Blood. 2002;99:95–101.

    Article  CAS  PubMed  Google Scholar 

  79. Klucher KM, Lopez DV, Daley GQ. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression.Blood. 1998;91:3927–3934.

    CAS  PubMed  Google Scholar 

  80. Nieborowska-Skorska M, Wasik MA, Slupianek A, et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis.J Exp Med. 1999;189:1229–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy.Mol Cell Biol. 1999;19:6918–6928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Palis J, Robertson S, Kennedy M,Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.Development. 1999;126:5073–5084.

    CAS  PubMed  Google Scholar 

  83. Salgia R, Li J-L, Lo SH, et al. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL.J Biol Chem. 1995;270:5039–5047.

    Article  CAS  PubMed  Google Scholar 

  84. Bazzoni G, Carlesso N, Griffin JD, Hemler ME. Bcr/Abl expression stimulates integrin function in hematopoietic cell lines.J Clin Invest. 1996;98:521–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions.Nature. 1991;352:438–441.

    Article  CAS  PubMed  Google Scholar 

  86. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T. Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice.Blood. 1997;90:4779–4788.

    CAS  PubMed  Google Scholar 

  87. Maru Y. Molecular biology of chronic myeloid leukemia.Int J Hematol. 2001;73:308–322.

    Article  CAS  PubMed  Google Scholar 

  88. Clarkson B, Strife A. Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment.Leukemia. 1993;7:1683–1721.

    CAS  PubMed  Google Scholar 

  89. Carroll M, Ohno-Jones S, Tamura S, et al. CPG 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins.Blood. 1997;90: 4947–4952.

    CAS  PubMed  Google Scholar 

  90. Melo JV. BCR-ABL gene variants.Baillieres Clin Haematol. 1997; 10:203–222.

    Article  CAS  PubMed  Google Scholar 

  91. Janssen JW, Ridge SA, Papadopoulos P, et al. The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event.Br J Haematol. 1995;90:222–224.

    Article  CAS  PubMed  Google Scholar 

  92. Hannemann JR, McManus DM, Kabarowski JH, Wiedemann LM. Haemopoietic transformation by the TEL/ABL oncogene.Br J Haematol. 1998;102:475–485.

    Article  CAS  PubMed  Google Scholar 

  93. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity.J Exp Med. 1999;189: 1399–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Era.

About this article

Cite this article

Era, T. Bcr-Abl is a “Molecular Switch” for the Decision for Growth and Differentiation in Hematopoietic Stem Cells. Int J Hematol 76, 35–43 (2002). https://doi.org/10.1007/BF02982716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982716

Key words

Navigation