Advertisement

International Journal of Hematology

, Volume 76, Issue 4, pp 349–353 | Cite as

Successful Treatment with Imatinib Mesylate of a CML Patient in Megakaryoblastic Crisis with Severe Fibrosis

  • Yuka Hirose
  • Hitoshi Kiyoi
  • Masanori Iwai
  • Toshiya Yokozawa
  • Masafumi Ito
  • Tomoki Naoe
Case Report

Abstract

The prognosis of patients with chronic myeloid leukemia in blastic crisis (CML-BC) remains extremely poor, and multiagent chemotherapy regimens commonly used to treat acute leukemia offer only short-term benefits. Therefore, the advent of the novel molecularly targeted anticancer agent imatinib mesylate is a breakthrough in CML therapy. We present a CML patient in megakaryoblastic crisis with severe myelofibrosis, who was treated with imatinib at a dosage of 400 mg/day and achieved complete remission together with a marked regression of myelofibrosis after 1 month. The effect of imatinib on the long-term prognosis remains unclear, although the agent is clearly a promising drug for treating CML-BC even in cases of myelofibrosis.Int J Hematol. 2002; 76: 349-353.

Key words

Chronic myeloid leukemia Blastic crisis Myelofibrosis Imatinib mesylate Molecular targeted therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia.N Engl J Med. 1999; 341: 164–172.CrossRefGoogle Scholar
  2. 2.
    Sawyers CL. Chronic myeloid leukemia.N Engl J Med. 1999; 340: 1330–1340.CrossRefGoogle Scholar
  3. 3.
    Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists’ Collaborative Group.J Natl Cancer Inst. 1997; 89: 1616-1620.Google Scholar
  4. 4.
    Sacchi S, Kantarjian HM, O’Brien S, et al. Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients.Cancer. 1999; 86: 2632–2641.CrossRefGoogle Scholar
  5. 5.
    Hernandez-Boluda JC, Cervantes F, Alvarez A, Costa D, Montserrat E. Single-agent therapy with oral mercaptopurine for nonlymphoid blast crisis of chronic myeloid leukemia.Ann Hematol. 2001; 80: 516–520.CrossRefGoogle Scholar
  6. 6.
    Kantarjian HM, Talpaz M, Keating MJ, et al. Intensive chemotherapy induction followed by interferon-alpha maintenance in patients with Philadelphia chromosome-positive chronic myelogenous leukemia.Cancer. 1991; 68: 1201–1207.CrossRefGoogle Scholar
  7. 7.
    Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia.J Clin Invest. 2000; 105: 3–7.CrossRefGoogle Scholar
  8. 8.
    Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells.Blood. 1997; 90: 3691–3698.PubMedGoogle Scholar
  9. 9.
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor.Blood. 2000; 96: 925–932.PubMedGoogle Scholar
  10. 10.
    Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative.Cancer Res. 1996; 56: 100–104.Google Scholar
  11. 11.
    Buchdunger E, Zimmermann J, Mett H, et al. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class.Proc Natl Acad Sci U S A. 1995; 92: 2558–2562.CrossRefGoogle Scholar
  12. 12.
    Carroll M, Ohno-Jones S, Tamura S, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins.Blood. 1997; 90: 4947–4952.PubMedGoogle Scholar
  13. 13.
    Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors.J Pharmacol Exp Ther. 2000; 295: 139–145.PubMedGoogle Scholar
  14. 14.
    Fang G, Kim CN, Perkins CL, et al. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs.Blood. 2000; 96: 2246–2253.PubMedGoogle Scholar
  15. 15.
    Gambacorti-Passerini C, le Coutre P, Mologni L, et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+leukemic cells and induces apoptosis.Blood Cells Mol Dis. 1997; 23: 380–394.CrossRefGoogle Scholar
  16. 16.
    Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells.Nat Med. 1996; 2: 561–566.CrossRefGoogle Scholar
  17. 17.
    le Coutre P, Mologni L, Cleris L, et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor.J Natl Cancer Inst. 1999; 9: 163–168.CrossRefGoogle Scholar
  18. 18.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.N Engl J Med. 2001; 344: 1031–1037.CrossRefGoogle Scholar
  19. 19.
    Druker B. Signal transduction inhibition: results from phase I clinical trials in chronic myeloid leukemia.Semin Hematol. 2001; 38: 9–14.CrossRefGoogle Scholar
  20. 20.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.N Engl J Med. 2001; 344: 1038–1042.CrossRefGoogle Scholar
  21. 21.
    Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ. Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells.Blood. 2000; 96: 3195–3199.PubMedGoogle Scholar
  22. 22.
    Bauermeister DE. Quantification of bone marrow reticulin: a normal range.Am J Clin Pathol. 1971; 72: 68–70.Google Scholar
  23. 23.
    Geary CG. The story of chronic myeloid leukaemia.Br J Haematol. 2000; 110: 2–11.CrossRefGoogle Scholar
  24. 24.
    Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia.Blood. 2000; 96: 3343–3356.PubMedGoogle Scholar
  25. 25.
    Sattler M, Griffin JD. Mechanisms of transformation by the BCR/ABL oncogene.Int J Hematol. 2001; 73: 278–291.CrossRefGoogle Scholar
  26. 26.
    Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study.Blood. 2002; 99: 3530–3539.CrossRefGoogle Scholar
  27. 27.
    Kantarjian HM, Cortes J, O’Brien S, et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase.Blood. 2002; 99: 3547–3553.CrossRefGoogle Scholar
  28. 28.
    Beham-Schmid C, Apfelbeck U, Sill H, et al. Treatment of chronic myelogenous leukemia with the tyrosine kinase inhibitor STI571 results in marked regression of bone marrow fibrosis.Blood. 2002; 99: 381–383.CrossRefGoogle Scholar
  29. 29.
    Tefferi A, Mesa RA, Gray LA, et al. Phase 2 trial of imatinib mesylate in myelofibrosis with myeloid metaplasia.Blood. 2002; 99: 3854–3856.CrossRefGoogle Scholar
  30. 30.
    Yang M, Khachigian LM, Hicks C, Chesterman CN, Chong BH. Identification of PDGF receptors on human megakaryocytes and megakaryocytic cell lines.Thromb Haemost. 1997; 78: 892–896.PubMedGoogle Scholar
  31. 31.
    Kvasnicka HM, Thiele J, Schmitt-Graeff A, et al. Bone marrow features improve prognostic efficiency in multivariate risk classification of chronic-phase Ph(1+) chronic myelogenous leukemia: a multicenter trial.J Clin Oncol. 2001; 19: 2994–3009.CrossRefGoogle Scholar
  32. 32.
    Thiele J, Kvasnicka HM, Schmitt-Graeff A, et al. Effects of interferon and hydroxyurea on bone marrow fibrosis in chronic myelogenous leukaemia: a comparative retrospective multicentre histological and clinical study.Br J Haematol. 2000; 108: 64–71.CrossRefGoogle Scholar
  33. 33.
    Hofmann WK, Vos S, Elashoff D, et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and geneexpression profiles: a gene-expression study.Lancet. 2002; 359: 481–486.CrossRefGoogle Scholar
  34. 34.
    von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study.Lancet. 2002; 359: 487–491.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Yuka Hirose
    • 1
  • Hitoshi Kiyoi
    • 1
  • Masanori Iwai
    • 1
  • Toshiya Yokozawa
    • 2
  • Masafumi Ito
    • 3
  • Tomoki Naoe
    • 1
  1. 1.Department of Infectious DiseasesNagoyaJapan
  2. 2.Department of Internal MedicineNagoya University School of MedicineNagoyaJapan
  3. 3.Department of PathologyNagoya University HospitalNagoyaJapan

Personalised recommendations