International Journal of Hematology

, Volume 75, Issue 4, pp 394–400 | Cite as

Leukemogenic Risk of Hydroxyurea Therapy as a Single Agent in Polycythemia Vera and Essential Thrombocythemia: N-and K-ras Mutations and Microsatellite Instability in Chromosomes 5 and 7 in 69 Patients

  • Despina Mavrogianni
  • Nora Viniou
  • Evi Michali
  • Evangelos Terpos
  • John Meletis
  • George Vaiopoulos
  • Marina Madzourani
  • Gerasimos Pangalis
  • Xenophon Yataganas
  • Dimitris Loukopoulos
Review Article


Polycythemia vera (PV) and essential thrombocythemia (ET) are chronic myeloproliferative diseases that carry intrinsically the potential for leukemic transformation. The aims of this study were (1) to detect involvement of N-and K-ras mutations in codons 12 and 13 in the pathogenesis of the chronic and blastic phases of PV and ET, (2) to study the occurrence of microsatellite instability (MSI) in chromosomes 5 and 7 during the chronic phase and blastic transformation of the disease, and (3) to examine the incidence of leukemia in patients treated with hydroxyurea (HU). Samples of PV and ET patients were analyzed with a polymerase chain reaction. No N-or K-ras mutations were detected. A positive score for MSI in chromosome 7 was found in 1 patient with PV during leukemic transformation. Three of 69 patients developed acute myelogenous leukemia, 2 with PV and 1 with ET. As of this report, the overall incidence of leukemic transformation is 5.7% (2/35 patients) in PV and 3.3% (1/30 patients) in ET patients treated with HU. These results indicate that (1) MSI is a genetic marker that can be detected, even in a small group of patients, at the blastic phase of the disease and (2) no increased leukemogenicity was noted in this group of patients treated with HU.

Key words

Myeloproliferative disorders ras Microsatellite instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vardiman JW. Chronic myelogenous leukemia and the myelopro-liferative disorders. In: Knowles DM, ed.Neoplastic Hematopathology. Baltimore, Md: Williams and Wilkins; 1992:1405–1438.Google Scholar
  2. 2.
    Hoffman R, Silverstein MN, Hromas R. Primary thrombocythemia. In: Hoffman R, Benz EZ Jr, Shattil SJ, Furie B, Cohen HJ, Silbersten LE, eds.Hematology: Basic Principles and Practice. New York, NY: Churchill Livingstone; 1995:1174–1184.Google Scholar
  3. 3.
    Raskid WH, Jacobson R, Murphy S, Adamson JW, Fialkow PJ. Evidence for the involvement of B lymphoid cells in polycythemia vera and essential thrombocythemia.J Clin Invest. 1985;75: 1388–1399.CrossRefGoogle Scholar
  4. 4.
    Harrison CN, Gale RE, Machin SJ, Linch DC. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications.Blood. 1999;93:417–424.PubMedPubMedCentralGoogle Scholar
  5. 5.
    El-Kasar N, Hetet G, Briere J, Grandchamp B. Clonality analysis of hematopoiesis in essential thrombocythemia: advantages of studying T lymphocytes and platelets.Blood. 1997;89:128–134.Google Scholar
  6. 6.
    Belucci S, Janvier M, Tobelen G, et al. Essential thrombocythemias: clinical evolutionary and biological data.Cancer. 1986; 58: 2440–2447.CrossRefGoogle Scholar
  7. 7.
    Cervantens F, Tassies D, Salgado C, Rovira M, Pereira A, Rozman C. Acute transformation in nonleukemic myeloproliferative disorders: actuarial probability and main characteristics in a series of 218 patients.Acta Hematol. 1991;85:124–127.CrossRefGoogle Scholar
  8. 8.
    Landaw SA. Acute leukemia in polycythemia vera.Semin Hematol. 1986;23:156–165.PubMedGoogle Scholar
  9. 9.
    Najean Y, Deschamps A, Dresch C, Daniel MT, Rain JD, Arrago JP. Acute leukemia and myelodysplasia in polycythemia vera: a clinical study with long-term follow up.Cancer. 1988;61:89–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Sessarego M, Deferrari R, Dejana AM, et al. Cytogenetic analysis in essential thrombocythemia at diagnosis and at transformation: a 12-year study.Cancer Genet Cytogenet. 1989;43:57–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Gaidano G, Guerrasio A, Serra A, et al. Mutations in the p53 and Ras family genes are associated with tumor progression of bcr/abl negative chronic myeloproliferative disorders.Leukemia. 1993;7: 946–953.PubMedGoogle Scholar
  12. 12.
    Gaidano G, Pastore C, Santini Y, et al. Genetic lesions associated with blastic transformation of polycythemia vera and essential thrombocythemia.Genes Chromosomes Cancer. 1997;19:250–255.CrossRefPubMedGoogle Scholar
  13. 13.
    Miller SA, Dyhes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acid Res. 1988;16:1215.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jacobson D, Mills M. A highly sensitive assay for mutant ras genes and its application to the study of presentation and relapse genotypes in acute leukemia.Oncogene. 1994;9:553–563.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Collins S. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression.Blood. 1987;70:1233–1244.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Fossum B, Olsen AC, Thorsby E, Gaudernack G. CD8+ cells from a patient with colon carcinoma, specific for a mutant p21-Ras-derived peptide (Gly13→Asp), are cytotoxic towards a carcinoma cell line harbouring the same mutation.Cancer Immunol Immunother. 1995;40:165–172.PubMedGoogle Scholar
  17. 17.
    Liang H, Fairman J, Claxton D, Nowell P, Green E, Nagarajan L. Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci.Proc Natl Acad Sci U S A. 1998;95:3781–3785.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Horrigan S, Westbrook C, Kim A, Banerjee M, Stock W, Larson R. Polymerase chain reaction-based diagnosis of del(5q) in acute myeloid leukemia and myelodysplastic syndrome identifies a minimal deletion interval.Blood. 1996;88:2665–2670.PubMedGoogle Scholar
  19. 19.
    Neri A, Fracchiolla NS, Radaelli F, et al. p53 tumour suppressor gene and Ras oncogenes: molecular analysis in the chronic and leukaemic phases of essential thrombocythaemia.Br J Haematol. 1996;93:670–673.CrossRefPubMedGoogle Scholar
  20. 20.
    Neuman W, Rubin C, Rachel R, et al. Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders.Blood. 1992;79:1501–1510.PubMedGoogle Scholar
  21. 21.
    LeBeau M, Espinosa R, Davis E, Eisenbart J, Larson R, Green E. Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid disorders.Blood. 1996; 88:1930–1935.Google Scholar
  22. 22.
    Bilgrami S, Greenberg BR. Polycythemia rubra vera.Semin Oncol. 1995;22:307–326.PubMedGoogle Scholar
  23. 23.
    Weinfeld A, Swolin B, Westin J. Acute leukemia after hydroxyurea therapy in polycythemia vera and allied disorders: prospective study of efficacy and leukaemogenicity with therapeutic implications.Eur J Haematol. 1994;52:134–139.CrossRefPubMedGoogle Scholar
  24. 24.
    Nand S, Messmore H, Fisher SG, Bird ML, Schultz W, Fisher RI. Leukemic transformation of PV: analysis of risk factors.Am J Hematol. 1990;34:32–36.CrossRefPubMedGoogle Scholar
  25. 25.
    West WO. Hydroxyurea in the treatment of polycythemia vera: a prospective study of 100 patients over a 20 year period.South Med J. 1987;80:323–327.CrossRefPubMedGoogle Scholar
  26. 26.
    Sharon R. Treatment of polycythemia vera with hydroxyurea.Cancer. 1986;57:718–720.CrossRefPubMedGoogle Scholar
  27. 27.
    Nand S, Stock W, Godwin J, Fisher S. Leukemogenic risk of hydrox-yurea therapy in polycythemia vera, essential thrombocythemia and myeloid metaplasia with myelofibrosis.Am J Hematol. 1996; 52:42–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Furgerson JL, Vukelja SJ, Baker WS, O’Rourke TJ. Acute myeloid leukemia evolving from essential thrombocythemia in two patients treated with hydroxyurea.Am J Hematol. 1996;51: 137–140.CrossRefPubMedGoogle Scholar
  29. 29.
    Pulik M, Lionnet F, Genet P, Petitdidier C, Jary L, Tuahri T. Acute myeloid leukemia evolving from polycythemia vera in a patient treated with hydroxyurea.Am J Hematol. 1996;53:207–208.CrossRefPubMedGoogle Scholar
  30. 30.
    Finazzi G, Ruggeri M, Rodeghiero F, Barbui T. Second malignancies in patients with essential thrombocythaemia treated with busulfan and hydroxyurea: long-term follow-up in a randomized clinical trial.Br J Haematol. 2000;110:577–583.CrossRefPubMedGoogle Scholar
  31. 31.
    Sterkers Y, Preudhomme C, Lai JL, et al. acute myeloid leukemia and myelodysplastic syndromes following essential thrombo-cythemia treated with hydroxyurea: high proportion of cases with 17p deletion.Blood. 1998;91:616–622.PubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Despina Mavrogianni
    • 1
  • Nora Viniou
    • 1
  • Evi Michali
    • 1
  • Evangelos Terpos
    • 1
  • John Meletis
    • 1
  • George Vaiopoulos
    • 1
  • Marina Madzourani
    • 1
  • Gerasimos Pangalis
    • 1
  • Xenophon Yataganas
    • 1
  • Dimitris Loukopoulos
    • 1
  1. 1.First Department of Internal Medicine, Laikon General HospitalUniversity of AthensAthensGreece

Personalised recommendations