International Journal of Hematology

, Volume 75, Issue 4, pp 370–375 | Cite as

Human CD34 Hematopoietic Stem Cells: Basic Features and Clinical Relevance

  • Kiyoshi Ando
Review Article


CD34 has been widely used as a stem and progenitor cell marker, and clinical CD34+ stem cell transplantation (CD34+ SCT) has been performed for tumor purging and for prevention of graft-versus-host disease. Recently, CD34-negative hemato-poietic stem cells (CD34 HSCs) were identified in mice and humans. Xenogeneic chimera engraftment assays with immun-odeficient mice or preimmune fetal sheep resulted in identification of human CD34 HSCs in cord blood, bone marrow, and granulocyte colony-stimulating factor-mobilized peripheral blood, although no significant clonogenic activity was detected in vitro. These characteristics of CD34 HSCs make the assessment of clinical samples difficult. The generation of CD34+ HSCs from CD34 cells in vitro may be a surrogate assay for detecting CD34 HSC activity. This approach was used in recipients of CD34+ SCT and revealed the absence of a CD34 precursor population.The identification of a positive marker in CD34 HSCs and the development of a simpler and more efficient in vivo assay for CD34 HSCs may allow the diagnostic evaluation of human CD34 HSCs in various clinical procedures and diseases.

Key words

CD34 Hematopoietic stem cell Xenogeneic transplantation assay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility.Blood. 1996;87:1–13.PubMedGoogle Scholar
  2. 2.
    Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis, III: a hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells.J Immunol. 1984;133:157–165.PubMedGoogle Scholar
  3. 3.
    Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation.Blood. 1995;85:3048–3057.PubMedGoogle Scholar
  4. 4.
    Cheng J, Baumhueter S, Cacalano G, et al. Hematopoietic defects in mice lacking the sialomucin CD34.Blood. 1996;87:479–490.PubMedGoogle Scholar
  5. 5.
    Suzuki A, Andrew DP, Gonzalo JA, et al. CD34-deficient mice have reduced eosinophil accumulation after allergen exposure and show a novel crossreactive 90-kD protein.Blood. 1996;87:3550–3562.PubMedGoogle Scholar
  6. 6.
    Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment.Stem Cells. 1998;16:166–177.CrossRefPubMedGoogle Scholar
  7. 7.
    Civin CI, Almeida-Porada G, Lee MJ, Olweus J, Terstappen LW, Zanjani ED. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivoBlood. 1996;88:4102–109.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Osawa M, Hanada K, Hamada H, Nakauchi H Long-term lym-phohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell.Science. 1996;273:242–244.CrossRefPubMedGoogle Scholar
  9. 9.
    Nakauchi H, Sudo K, Ema H. Quantitative assessment of the stem cell self-renewal capacity.Ann N Y Acad Sci. 2001;938:18–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones RJ, Collector MI, Barber JP, et al. Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity.Blood. 1996;88:487–491.PubMedGoogle Scholar
  11. 11.
    Goodell M, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species.Nat Med. 1997;3: 1337–1345.CrossRefPubMedGoogle Scholar
  12. 12.
    Sato T, Laver JH, Ogawa M. Reversible expression of CD34 by murine hematopoietic stem cells.Blood. 1999;94:2548–2554.PubMedGoogle Scholar
  13. 13.
    Tajima F, Sato T, Laver HJ, Ogawa M. CD34 expression by humane hematopoietic stem cells mobilized by granulocyte colony-stimulating factor.Blood. 2000;96:1989–1993.PubMedGoogle Scholar
  14. 14.
    Ito T, Tajima F, Ogawa M. Developmental change of CD34 expression by murine hematopoietic stem cells.Exp Hematol. 2000;28: 1269–1273.CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuoka S, Ebihara Y, Xu M, et al. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages.Blood. 2001;97:419–425.CrossRefPubMedGoogle Scholar
  16. 16.
    Bhatia M, Bonnet D, Murdoch B, Gan O, Dick J. A newly discovered class of human hematopoietic cells with SCID-repopulating activity.Nat Med. 1998;4:1038–1045.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakamura Y, Ando K, Chargui J, et al.Ex vivogeneration of CD34 positive cells from CD34 negative hematopoietic cellsBlood. 1999; 94:4053–4059.PubMedGoogle Scholar
  18. 18.
    Gao Z, Fackler MJ, Leung W, et al. Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34 cell preparations.Exp Hematol. 2001;29:910–921.CrossRefPubMedGoogle Scholar
  19. 19.
    Ando K, Nakamura Y, Chargui J, et al. Extensive generation of human cord blood CD34+ stem cells from Lin-CD34 cells in a long-term in vitro system.Exp Hematol. 2000;28:690–699.CrossRefPubMedGoogle Scholar
  20. 20.
    Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani E. Kinetics of engraftment of CD34 and CD34+ cells from mobilized blood differs from that of CD34 and CD34+ cells from bone marrow.Exp Hematol. 2000;28:1071–1079.CrossRefPubMedGoogle Scholar
  21. 21.
    Zanjani E, Almeida-Porada G, Livingston A, Flake A, Ogawa M.. Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34 cells.Exp Hematol. 1998;26:353–360.PubMedGoogle Scholar
  22. 22.
    Zanjani ED, Almeida-Porada G, Livingston AG, Zeng HO, Ogawa M. Long-term engrafting capabilities of CD34-negative human adult marrow cells [abstract].Blood. 1998;92:504a.Google Scholar
  23. 23.
    Fujisaki T, Berger MG, Rose-John S, Eaves CJ. Rapid differentiation of a rare subset of adult human LinCD34CD38 cells stimulated by multiple growth factors in vitro.Blood. 1999;94:1926–1932.PubMedGoogle Scholar
  24. 24.
    Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34Lin and CD34+Lin hematopoietic stem cells using cell surface markers AC133 and CD7.Blood. 2000;95:2813–2820.PubMedGoogle Scholar
  25. 25.
    Nakamura Y, Ando K, Sumita M, et al. Effective enrichment of the precursor populations of human CD34 hematopoietic cells by newly developed filter system.Br J Haematol. 2000;108:801–804.CrossRefPubMedGoogle Scholar
  26. 26.
    Danet GH, Luongo J, Butler G, Tenner AJ, Bonnet DA. C1qRp: new positive marker for human LinCD34CD38 repopulating cells [abstract].Blood. 2000;96:492a.Google Scholar
  27. 27.
    Dooley DC, Oppenlander BK, Plunkett JM. LinCD34CD38 cells from mobilized human peripheral blood: proliferation in serum-free and stroma-based culture systems [abstract].Blood. 1999;94: 465a.Google Scholar
  28. 28.
    Dao MA, Nolta JA. CD34: to select or not to select? That is the question.Leukemia. 2000;14:773–776.CrossRefPubMedGoogle Scholar
  29. 29.
    Yabe H, Yabe M, Hattori K, et al. Successful engraftment of allo-geneic CD34-enriched marrow cell transplantation from HLA-mismatched parental donors.Bone Marrow Transplant. 1996;17: 985–991.PubMedGoogle Scholar
  30. 30.
    Kato S, Ando K, Nakamura Y, et al. Absence of a CD34 hematopoietic precursor population in recipients of CD34 stem cell transplantation.Bone Marrow Transplant. 2001;28:587–595.CrossRefPubMedGoogle Scholar
  31. 31.
    Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hemato-poietic stem cells can differentiate into hepatocytes in vivo.Nat Med. 2000;6:1229–1234.CrossRefPubMedGoogle Scholar
  32. 32.
    Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells.Science. 1999;284: 1168–1170.CrossRefPubMedGoogle Scholar
  33. 33.
    Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans.Hepatology. 2000;32:11–16.CrossRefPubMedGoogle Scholar
  34. 34.
    Alison MR, Poulsom R, Jeffery R, et al. Cell differentiation: hepatocytes from non-hepatic adult stem cells.Nature. 2000;406:257.CrossRefPubMedGoogle Scholar
  35. 35.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium.Nature. 2001;410:701–705.CrossRefPubMedGoogle Scholar
  36. 36.
    Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation.Nature. 1999;401:390–394.PubMedGoogle Scholar
  37. 37.
    Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.J Clin Invest. 2001;107:1395–1402.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.Cell. 2001;105:369–377.CrossRefPubMedGoogle Scholar
  39. 39.
    Geiger H, Sick S, Bonifer C, Muller AM. Globin gene expression is reprogrammed in chimeras generated by infecting adult hematopoietic stem cells into mouse blastocysts.Cell. 1998;93: 1055–1065.CrossRefPubMedGoogle Scholar
  40. 40.
    Bjornson CR, Rietze RL, Reynolds BA, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo.Science. 1999;283:534–537.CrossRefPubMedGoogle Scholar
  41. 41.
    Shih CC, Weng Y, Mamelak A, LeBon T, Hu MC, Forman SJ. Identification of a candidate human neurohematopoietic stem-cell population.Blood. 2001;98:2412–2422.CrossRefPubMedGoogle Scholar
  42. 42.
    Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle.Proc Natl Acad Sci U S A. 1999;96:14482–14486.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kawada H, Ogawa M. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle.Blood. 2001;98: 2008–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells.Science. 2000;288:1660–1663.CrossRefPubMedGoogle Scholar
  45. 45.
    Jahagirdar B, Jiang Y, Reyes M, et al. Multipotent cells derived from adult mouse marrow engraft in a non-injured recipient and differentiate into hematopoietic, epithelial and endothelial tissues [abstract].Blood. 2001;98:547a.Google Scholar
  46. 46.
    Ortiz M, Wine JW, Lohrey N, Ruscetti FW, Spence SE, Keller JR. Functional characterization of a novel hematopoietic stem cell and its place in the c-Kit maturation pathway in bone marrow cell development.Immunity. 1999;10:173–182.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  1. 1.Department of Hematology and Rheumatology and Research Center for Cell TransplantationTokai University, School of Medicine, BohseidaiIsehara, KanagawaJapan

Personalised recommendations