International Journal of Hematology

, Volume 75, Issue 5, pp 473–483 | Cite as

Molecular Control of Megakaryopoiesis and Thrombopoiesis

Progress in Hematology

Abstract

Megakaryopoiesis and subsequent thrombopoiesis occur through complex biologic steps: megakaryocyte precursors that developed from hematopoietic stem cells initially proliferate, then differentiate into mature polyploid megakaryocytes, and finally release platelets. Although a number of growth factors can augment megakaryopoiesis in vitro, thrombopoietin is a physiologic and the most potent regulator of megakaryopoiesis in vitro and in vivo. Thrombopoietin induces the growth of megakaryocyte precursors through activation of multiple signaling cascades, including Ras/mitogen-activated protein kinase (MAPK), signal transducers and activators of transcription 5 (STAT5), phosphatidylinositol 3-kinase (PI3-K)/Akt, and protein kinase C, whereas it induces megakaryocytic maturation primarily through the Ras/MAPK pathway. During the maturation step, megakaryocytes undergo polyploidization characterized by repeated rounds of DNA replication without concomitant cell division. During these rounds of replication, cytokinesis is neglected because of the down-regulated expression of AIM-1, and DNA replication occurs through the increased expression of D-type cyclins.As for transcriptional regulation during megakary-opoiesis, GATA-1 plays a central role in the lineage commitment of hematopoietic stem cells toward erythroid/megakaryocytic lineage and subsequent maturation. p45 NF-E2 is essential for platelet release from terminally differentiated megakaryocytes. At present, mutations of GATA-1, AML1, and HOXA11 genes have been found in hereditary diseases accompanying throm-bocytopenia among humans.

Key words

Thrombopoietin c-mpl AIM-1 GATA-1 NF-E2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffman R, Murrav LJ, Young JC, Luens KM, Bruno E. Hierarchical structure of human megakaryocyte progenitor cells.Stem Cells.1996;14:75–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Miyazaki H. Physiologic role of TPO in thrombopoiesis.Stem Cells.1996;14(suppl 1):133–138.CrossRefPubMedGoogle Scholar
  3. 3.
    Nurden P, Poujol C, Nurden AT. The evolution of megakaryocytes to platelets.Baillieres Clin Haematol. 1997;10:1–27.CrossRefPubMedGoogle Scholar
  4. 4.
    Shivdasani RA. Molecular and transcriptional regulation of megakaryocyte differentiation.Stem Cells. 2001;19:397–407.CrossRefPubMedGoogle Scholar
  5. 5.
    Wendling F, Han ZC. Positive and negative regulation of megakaryocytopoiesis.Baillieres Clin Haematol. 1997;10:29–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Kuter DJ, Gminski DM, Rosenberg RD. Transforming growth factor β inhibits megakaryocyte growth and endomitosis.Blood. 1992; 79:619–626.PubMedGoogle Scholar
  7. 7.
    Gewirtz AM, Zhang J, Ratajczak J, et al. Chemokine regulation of human megakaryocytopoiesis.Blood. 1995;86:2559–2567.PubMedGoogle Scholar
  8. 8.
    Ganser A, Carlo-Stella C, Greher J, Volkers B, Hoelzer D. Effect of recombinant interferons α and γ on human bone marrow-derived megakaryocytic progenitor cells.Blood. 1987;70:1173–1179.PubMedGoogle Scholar
  9. 9.
    Nishinakamura R, Nakayama N, Hirabayashi Y, et al. Mice deficient for the IL-3/GM-CSF/IL-5 β c receptor exhibit lung pathology and impaired immune response, while β IL3 receptor-deficient mice are normal.Immunity. 1995;2:211–222.CrossRefPubMedGoogle Scholar
  10. 10.
    Nandurkar HH, Robb L, Tarlinton D, Barnett L, Kontgen F, Begley CG. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Rα) display normal hematopoiesis.Blood. 1997;90: 2148–2159.PubMedGoogle Scholar
  11. 11.
    Biesma B, Willemse PH, Mulder NH, et al. Effects of interleukin-3 after chemotherapy for advanced ovarian cancer.Blood. 1992;80: 1141–1148.PubMedGoogle Scholar
  12. 12.
    Gordon MS, McCaskill-Stevens WJ, Battiato LA, et al. A phase I trial of recombinant human interleukin-11 (neumega rhIL-11 growth factor) in women with breast cancer receiving chemotherapy.Blood. 1996;87:3615–3624.PubMedGoogle Scholar
  13. 13.
    Gurney AL, Carver-Moore K, Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice.Science. 1994;265:1445–1447.CrossRefPubMedGoogle Scholar
  14. 14.
    de Sauvage FJ, Carver-Moor K, Luoh SM, et al. Physiological regulation of early and late stages of megakaryopoiesis by throm-bopoietin.J Exp Med. 1996;183:651–656.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin.Nature. 1994;369:568–571.CrossRefPubMedGoogle Scholar
  16. 16.
    Farese AM, Hunt P, Boone T, MacVittie TJ. Recombinant human megakaryocyte growth and development factor stimulates throm-bocytopoiesis in normal nonhuman primates.Blood. 1995;86:54–59.PubMedGoogle Scholar
  17. 17.
    Basser RL, Rasko JE, Clarke K, et al. Thrombopoietic effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in patients with advanced cancer.Lancet. 1996;348:1279–1281.CrossRefPubMedGoogle Scholar
  18. 18.
    Fanucchi M, Glaspy J, Crawford J, et al. Effects of polyethylene gly-col-conjugated recombinant human megakaryocyte growth and development factor on platelet counts after chemotherapy for lung cancer.N Engl J Med. 1997;336:404–409.CrossRefPubMedGoogle Scholar
  19. 19.
    Miyakawa Y, Oda A, Druker BJ, Kato T, Miyazaki H, Handa M. Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets.Blood. 1995;86:23–27.PubMedGoogle Scholar
  20. 20.
    Kaushansky K. Thrombopoietin: the primary regulator of platelet production.Blood. 1995;86:419–431.PubMedGoogle Scholar
  21. 21.
    Alexander WS. Thrombopoietin.Growth Factors. 1999;17:13–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsumura I, Ishikawa J, Nakajima K, et al. Thrombopoietin-induced differentiation of a human megakaryoblastic leukemia cell line CMK involves transcriptional activation of p21WAF1/Cip1 by STAT5.Mol Cell Biol. 1997;17:2933–2943.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation.Proc Natl Acad Sci U S A. 1995;92:5292–5296.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Porteu F, Rouyez MC, Cocault L, et al. Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin.Mol Cell Biol. 1996;16: 2473–2482.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alexander WS, Maurer AB, Novak U, Harrison-Smith M. Tyrosine-599 of the c-Mpl receptor is required for Shc phosphorylation and the induction of cellular differentiation.EMBO J. 1996;15: 6531–6540.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Luoh SM, Stefanich E, Solar G, et al. Role of the distal half of the c-Mpl intracellular domain in control of platelet production by thrombopoietin in vivo.Mol Cell Biol. 2000;20:507–515.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Matsumura I, Nakajima K, Wakao H, et al. Involvement of prolonged ras activation in thrombopoietin-induced megakaryocytic differentiation of a human factor-dependent hematopoietic cell line.Mol Cell Biol. 1998;18:4282–4290.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Matsumura I, Kitamura T, Wakao H, et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells.EMBO J. 1999; 18:1367–1377.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dorsch M, Fan PD, Danial NN, Rothman PB, Goff SP. The thrombopoietin receptor can mediate proliferation without activation of the Jak-STAT pathway.J Exp Med. 1997;186:1947–1955.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hong Y, Dumenil D, van der Loo B, Goncalves F, Vainchenker W, Erusalimsky JD. Protein kinase C mediates the mitogenic action of thrombopoietin in c-Mpl-expressing UT-7 cells.Blood. 1998;91: 813–822.PubMedGoogle Scholar
  31. 31.
    Melemed AS, Ryder JW, Vik TA. Activation of the mitogen-acti-vated protein kinase pathway is involved in and sufficient for megakaryocytic differentiation of CMK cells.Blood. 1997;90: 3462–3470.Google Scholar
  32. 32.
    Rouyez M-C, Boucheron C, Gisselbrecht S, Dusanter-Fourt I, Porteu F. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway.Mol Cell Biol. 1997;17:4991–5000.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Whalen AN, Galasinski SC, Shapiro PS, Nahreini TS, Ahn NG. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.Mol Cell Biol. 1997;17: 1947–1958.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rojnuckarin P, Drachman JG, Kaushansky K. Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: role in endomitosis.Blood. 1999;94:1273–1282.PubMedGoogle Scholar
  35. 35.
    Fichelson S, Freyssinier JM, Picard F, et al. Megakaryocyte growth and development factor-induced proliferation and differentiation are regulated by the mitogen-activated protein kinase pathway in primitive cord blood hematopoietic progenitors.Blood. 1999;94: 1601–1613.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Garcia J, de Gunzburg J, Eychene A, Gisselbrecht S, Porteu F. Thrombopoietin-mediated sustained activation of extracellular signal-regulated kinase in UT7-Mpl cells requires both Ras-Raf-1-and Rap1-B-Raf-dependent pathways.Mol Cell Biol. 2001;21: 2659–2670.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang FC, Tsuji K, Oda A, et al. Differential effects of human granulocyte colony-stimulating factor (hG-CSF) and thrombopoietin on megakaryopoiesis and platelet function in hG-CSF receptor-transgenic mice.Blood. 1999;94:950–958.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Datta NS, Williams JL, Caldwell J, Curry AM, Ashcraft EK, Long MW. Novel alterations in CDK1/cyclin B1 kinase complex formation occur during the acquisition of a polyploid DNA content.Mol Cell Biol. 1996;7:209–223.CrossRefGoogle Scholar
  39. 39.
    Garcia P, Cales C. Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and down-regulation of cdc25C.Oncogene. 1996;13:695–703.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang Y, Wang Z, Ravid K.The cell cycle in polyploid megakaryo-cytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase.J Biol Chem. 1996;271:4266–4272.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang Y, Wang Z, Liu DX, Pagano M, Ravid K. Ubiquitin- dependent degradation of cyclin B is accelerated in polyploid megakaryocytes.J Biol Chem. 1998;273:1387–1392.CrossRefPubMedGoogle Scholar
  42. 42.
    Vitrat N, Cohen-Solal K, Pique C, et al. Endomitosis of human megakaryocytes are due to abortive mitosis.Blood. 1998;91: 3711–3723.PubMedGoogle Scholar
  43. 43.
    Zimmet J, Ravid K. Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system.Exp Hematol. 2000;28:3–16.CrossRefPubMedGoogle Scholar
  44. 44.
    Nagata Y, Muro Y, Todokoro K. Thrombopoietin-induced poly- ploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis.J Cell Biol. 1997;139:449–457.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bassini A, Pierpaoli S, Falcieri E, et al. Selective modulation of the cyclin B/CDK1 and cyclin D/CDK4 complexes during in vitro human megakaryocyte development.Br J Haematol. 1999;104:820–828.CrossRefPubMedGoogle Scholar
  46. 46.
    Bischoff JR, Plowman GD. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis.Trends Cell Biol. 1999;9:454–459.CrossRefPubMedGoogle Scholar
  47. 47.
    Terada Y, Tatsuka M, Suzuki F, Yasuda Y, Fujita S, Otsu M. AIM-1: a mammalian midbody-associated protein required for cytokinesis.EMBO J. 1998;17:667–676.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kawasaki A, Matsumura I, Miyagawa Ji, et al. Downregulation of an AIM-1 kinase couples with megakaryocytic polyploidization of human hematopoietic cells.J Cell Biol. 2001;152:275–287.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang Y, Sun S, Chen WC, et al. Repression of AIM-1 kinase mRNA as part of a program of genes regulated by Mpl ligand.Biochem Biophys Res Commun. 2001;282:844–849.CrossRefPubMedGoogle Scholar
  50. 50.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression.Genes Dev. 1999;13:1501–1512.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang Z, Zhang Y, Kamen D, Lees E, Ravid K. Cyclin D3 is essential for megakaryocytopoiesis.Blood. 1995;86:3783–3788.PubMedGoogle Scholar
  52. 52.
    Zimmet JM, Ladd D, Jackson CW, Stenberg PE, Ravid K. A role for cyclin D3 in the endomitotic cell cycle.Mol Cell Biol. 1997;17: 7248–7259.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Matsumura I,Tanaka H, Kawasaki A, et al. Increased D-type cyclin expression together with decreased cdc2 activity confers megakaryocytic differentiation of a human thrombopoietin-dependent hematopoietic cell line.J Biol Chem. 2000;275:5553–5559.CrossRefPubMedGoogle Scholar
  54. 54.
    Sun S, Zimmet JM, Toselli P, Thompson A, Jackson CW, Ravid K. Overexpression of cyclin D1 moderately increases ploidy in megakaryocytes.Haematologica. 2001;86:17–23.PubMedGoogle Scholar
  55. 55.
    Shivdasani RA, Orkin SH. The transcriptional control of hematopoiesis.Blood. 1996;87:4025–4039.PubMedGoogle Scholar
  56. 56.
    Sieweke MH, Graf T. A transcription factor party during blood cell differentiation.Curr Opin Genet Dev. 1998;8:545–551.CrossRefPubMedGoogle Scholar
  57. 57.
    Weiss MJ, Orkin SH. GATA transcription factors: key regulators of hematopoiesis.Exp Hematol. 1995;23:99–107.PubMedGoogle Scholar
  58. 58.
    Orkin SH, Shivdasani RA, Fujiwara Y, McDevitt MA. Transcription factor GATA-1 in megakaryocyte development.Stem Cells.1998;16(suppl 2):79–83.PubMedGoogle Scholar
  59. 59.
    Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts.Genes Dev. 1995;9:1250–1262.CrossRefPubMedGoogle Scholar
  60. 60.
    Visvader JE, Elefanty AG, Strasser A, Adams JM. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line.EMBO J. 1992;11:4557–4564.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Tanaka H, Matsumura I, Nakajima K, et al. GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and bcl-2 in a murine myeloid cell line M1.Blood. 2000;95:1264–1273.PubMedGoogle Scholar
  62. 62.
    Matsumura I, Kawasaki A,Tanaka H, et al. Biologic significance of GATA-1 activities in Ras-mediated megakaryocytic differentiation of hematopoietic cell lines.Blood. 2000;96:2440–2450.PubMedGoogle Scholar
  63. 63.
    Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells.Genes Dev. 1999;13: 1398–1411.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang P, Behre G, Pan J, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1.Proc Natl Acad Sci U S A. 1999;96:8705–8710.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Takahashi T, Suwabe N, Dai P, Yamamoto M, Ishii S, Nakano T. Inhibitory interaction of c-Myb and GATA-1 via transcriptional co-activator CBP.Oncogene. 2000;19:134–140.CrossRefPubMedGoogle Scholar
  66. 66.
    Allen RD 3rd, Bender TP, Siu G. c-Myb is essential for early T cell development.Genes Dev. 1999;13:1073–1078.CrossRefPubMedGoogle Scholar
  67. 67.
    Gregory T, Yu C, Ma A, Orkin SH, Blobel GA,Weiss MJ. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression.Blood. 1999;94:87–96.PubMedGoogle Scholar
  68. 68.
    Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development.EMBO J. 1997;16:3965–3973.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Takahashi S, Komeno T, Suwabe N, et al. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakary-ocytic cells in vivo.Blood. 1998;92:434–442.PubMedGoogle Scholar
  70. 70.
    Nichols KE, Crispino JD, Poncz M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1.Nat Genet. 2000;24:266–270.CrossRefPubMedGoogle Scholar
  71. 71.
    Freson K, Devriendt K, Matthijs G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation.Blood. 2001;98:85–92.CrossRefPubMedGoogle Scholar
  72. 72.
    Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. Consequences of GATA-1 deficiency in megakaryocytes and platelets.Blood. 1999;93:2867–2875.PubMedGoogle Scholar
  73. 73.
    Tsang AP, Visvader JE, Turner CA, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation.Cell. 1997;90:109–119.CrossRefPubMedGoogle Scholar
  74. 74.
    Tsang AP, Fujiwara Y, Hom DB, Orkin SH. Failure of megakary-opoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG.Genes Dev. 1998;12:1176–1188.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kaufman RM, Airo R, Pollack S, Crosby WH. Circulating megakaryocytes and platelet release in the lung.Blood. 1965;26:720–728.PubMedGoogle Scholar
  76. 76.
    Italiano JE Jr, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes.J Cell Biol.1999;147:1299–1312.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Radley JM, Scurfield G. The mechanism of platelet release.Blood.1980;56:996–999.PubMedGoogle Scholar
  78. 78.
    Norol F, Vitrat N, Cramer E, et al. Effects of cytokines on platelet production from blood and marrow CD34+ cells.Blood. 1998;91: 830–843.PubMedGoogle Scholar
  79. 79.
    Radley JM, Hartshorn MA, Green SL. The response of megakaryocytes with processes to thrombin.Thromb Haemost. 1987;58: 732–736.PubMedGoogle Scholar
  80. 80.
    Leven RM, Tablin F. Extracellular matrix stimulation of guinea pig megakaryocyte proplatelet formation in vitro is mediated through the vitronectin receptor.Exp Hematol. 1992;20:1316–1322.PubMedGoogle Scholar
  81. 81.
    Hunt P, Hokom MM, Hornkohl A, Wiemann B, Rohde MF, Arakawa T. The effect of the platelet-derived glycosaminoglycan serglycin on in vitro proplatelet-like process formation.Exp Hematol. 1993;21:1295–1304.PubMedGoogle Scholar
  82. 82.
    Ney PA, Sorrentino BP, McDonagh KT, Nienhuis AW. Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells.Genes Dev. 1990;4:993–1006.CrossRefPubMedGoogle Scholar
  83. 83.
    Talbot D, Grosveld F. The 5′HS2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NF-E2 binding sites.EMBO J. 1991;10:1391–1398.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Lecine P, Blank V, Shivdasani R. Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes.J Biol Chem. 1998;273:7572–7578.CrossRefPubMedGoogle Scholar
  85. 85.
    Motohashi H, Katsuoka F, Shavit JA, Engel JD, Yamamoto M. Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins.Cell. 2000;103: 865–875.CrossRefPubMedGoogle Scholar
  86. 86.
    Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development.Cell. 1995;81:695–704.CrossRefPubMedGoogle Scholar
  87. 87.
    Levin J, Peng JP, Baker GR, et al. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2.Blood. 1999;94:3037–3047.PubMedGoogle Scholar
  88. 88.
    Lecine P, Villeval JL, Vyas P, Swencki B, Xu Y, Shivdasani RA. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes.Blood. 1998; 92:1608–1616.PubMedGoogle Scholar
  89. 89.
    Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD. Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice.Genes Dev. 1998;12:2164–2174.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Deveaux S, Cohen-Kaminsky S, Shivdasani RA, et al. p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes.EMBO J. 1997;16:5654–5661.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lecine P, Italiano JE Jr, Kim SW, Villeval JL, Shivdasani RA. Hematopoietic-specific β1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2.Blood. 2000;96:1366–1373.PubMedGoogle Scholar
  92. 92.
    Weiss HJ, Lages BA. Possible congenital defect in platelet thromboxane synthetase.Lancet. 1977;1:760–761.CrossRefPubMedGoogle Scholar
  93. 93.
    Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia.Nat Genet. 1999;23: 166–175.CrossRefPubMedGoogle Scholar
  94. 94.
    Deveaux S, Filipe A, Lemarchandel V, Ghysdael J, Romeo PH, Mignotte V. Analysis of the thrombopoietin receptor (MPL) promoter implicates GATA and Ets proteins in the coregulation of megakaryocyte-specific genes.Blood. 1996;87:4678–4685.PubMedGoogle Scholar
  95. 95.
    Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Romeo PH. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression.Mol Cell Biol. 1993;13:668–676.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hart A, Melet F, Grossfeld P, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia.Immunity. 2000;13: 167–177.CrossRefGoogle Scholar
  97. 97.
    Sauvageau G, Lansdorp PM, Eaves CJ, et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells.Proc Natl Acad Sci U S A. 1994; 91:12223–12227.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Thorsteinsdottir U, Sauvageau G, Hough MR, et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia.Mol Cell Biol. 1997;17:495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation.Nat Genet. 2000;26:397–398.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  1. 1.Department of Hematology and OncologyOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations