Advertisement

International Journal of Hematology

, Volume 75, Issue 3, pp 309–313 | Cite as

Acute Basophilic Leukemia Lacking Basophil-Specific Antigens: The Importance of Cytokine Receptor Expression in Differential Diagnosis

  • Akihiko Yokohama
  • Norifumi Tsukamoto
  • Nahoko Hatsumi
  • Miwa Suto
  • Tohru Akiba
  • Hideki Uchiumi
  • Tadashi Maehara
  • Takafumi Matsushima
  • Masamitsu Karasawa
  • Hirokazu Murakami
  • Shougo Shinonome
  • Hirohisa Saito
  • Yoshihisa Nojima
Case Report

Abstract

De novo acute basophilic leukemia (ABL) is a rare form of myeloid leukemia. The low prevalence of ABL makes it difficult to define its clinical characteristics and to establish an effective therapeutic protocol. We present here a case of de novo ABL in a 64-year-old Japanese man. The diagnosis of ABL depended on the following: (1) metachromasia with toluidine blue stain, (2) intracytoplasmic theta granules identified by electron microscopy, and (3) findings obtained from extensive immunophenotypic analysis. Although blast cells lacked basophil-specific antigens such as CDw17, CD88, and FcεRI, an expression profile of cytokine receptors including CD116 (GM-CSF receptor), CD117 (c-kit), and CD123 (IL-3 receptor α) helped to define the cellular lineage in our case. The patient achieved complete remission with intensive chemotherapy composed of idarubicin and cytosine arabinoside and was disease free during the following 30 months. We propose that immunophenotyping, especially focusing on cytokine receptors, is useful in diagnosing ABL.

Key words

Acute basophilic leukemia CD116 CD117 CD123 Chemotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ishii N, Murakami H, Matsushima T, et al. Histamine excess symptoms in basophilic crisis of chronic myelogenous leukemia.J Med. 1995;26:235–240.PubMedGoogle Scholar
  2. 2.
    Shimizu N, Kita K, Masuya M, et al. Cellular characteristics of chronic myelocytic leukemia basophilic crisis cells: phenotype, responsiveness to and receptor gene expression for various kinds of growth factors and cytokines.Exp Hemtol. 1993;21:119–125.Google Scholar
  3. 3.
    Shekhter-Levin S, Penchansky L, Wollman M, Sherer M, Wald N, Gollin S. An abnormal clone with monosomy 7 and trisomy 21 in the bone marrow of a child with congenital agranulocytosis (Kostmann disease) treated with granulocyte colony-stimulating factor. Evolution towards myelodysplastic syndrome and basophilic leukemia.Cancer Genet Cytogenet. 1995;84:99–104.CrossRefPubMedGoogle Scholar
  4. 4.
    Yamagata T, Miwa A, Eguchi M, et al. Transformation into acute basophilic leukemia in a patient with myelodysplastic syndrome.Br J Haematol. 1995;89:650–652.CrossRefPubMedGoogle Scholar
  5. 5.
    Wick M, Li C-Y, Pierre R. Acute nonlymphocytic leukemia with basophilic differentiation.Blood. 1982;60:38–45.PubMedGoogle Scholar
  6. 6.
    Harris N, Jaffe E, Diebold J, et al. World health organization classification of neoplastic diseases of the hematopoietic and lymphoid tissue: report of the clinical advisory committee meeting—Airlie House, Virginia, November 1997.J Clin Oncol. 1999;17:3835–3849.CrossRefGoogle Scholar
  7. 7.
    Bernini J, Timmons C, Sandler E. Acute basophilic leukemia in a child.Cancer. 1995;75:110–114.CrossRefPubMedGoogle Scholar
  8. 8.
    Dastugue N, Duchayne E, Kuhlein E, et al. Acute basophilic leukaemia and translocation t(X;6)(p11;q23).Br J Haematol. 1997;98:170–176.CrossRefPubMedGoogle Scholar
  9. 9.
    Peterson L, Parkin J, Arthur D, Brunning R. Acute basophilic leukemia. A clinical, morphologic, and cytogenetic study of eight cases.Am J Clin Pathol. 1991;96:160–170.CrossRefPubMedGoogle Scholar
  10. 10.
    Scolyer R, Brun M, D’Rozario J, Webb M. Acute basophilic leukemia presenting with abnormal liver function tests and the absence of blast cells in the peripheral blood.Pathology. 2000;32:52–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Kempuraj D, Saito H, Kaneko A, et al. Characterization of mast cell-committed progenitors present in human umbilical cord blood.Blood. 1999;93:3338–3346.PubMedGoogle Scholar
  12. 12.
    Ahn K, Takai S, Pawankar R, et al. Regulation of chymase production in human mast cell progenitors.J Allergy Clin Immunol. 2000;106:321–328.CrossRefPubMedGoogle Scholar
  13. 13.
    Kirshenbaum A, Goff J, Semere T, Foster B, Scott L, Metcalfe D. Demonstration that human mast cells arise from a progenitor cell population that is CD34+, c-kit+, and expresses aminopeptidase N (CD13).Blood. 1999;94:2333–2342.PubMedGoogle Scholar
  14. 14.
    Vecchio L, Schiavone M, Ferara F, et al. Immunodiagnosis of acute leukemia displaying ectopic antigens: proposal for a classification of promiscuous phenotypes.Am J Hematol. 1989;31:173–180.CrossRefPubMedGoogle Scholar
  15. 15.
    Duchayne E, Demur C, Rubie H, Robert A, Dastugue N. Diagnosis of acute basophilic leukemia.Leuk Lymph. 1999;32:269–278.CrossRefGoogle Scholar
  16. 16.
    Invernizzi R, Iannone A, Bernuzzi S, et al. Acute promyelocytic leukemia toluidine blue subtype.Leuk Lymphoma. 1995;18:57–60.CrossRefGoogle Scholar
  17. 17.
    Valent P. The phenotype of human eosinophils, basophils, and mast cells.J Allergy Clin Immunol. 1994;94:1177–1183.CrossRefGoogle Scholar
  18. 18.
    Irani A, Nilsson G, Miettinen U, et al. Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells.Blood. 1992;80:3009–3021.Google Scholar
  19. 19.
    Mitsui H, Furitsu T, Dvorak A, et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand.Proc Natl Acad Sci U S A. 1993;90:735–739.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Valent P, Bettelheim P. Cell surface structures on human basophils and mast cells: biochemical and functional characterization.Adv Immunol. 1992;52:333–423.CrossRefPubMedGoogle Scholar
  21. 21.
    Valent P, Spanblochl E, Sperr W, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant stem cell factor/kit-ligand in long term culture.Blood. 1992;80:2237–2245.Google Scholar
  22. 22.
    Agis H, Füreder W, Bankl HC, et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes.Immunology. 1996;87:535–543.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Valent P. Mast cell differentiation antigens: expression in normal and malignant cells and use for diagnostic purposes.Eur J Clin Invest. 1995;25:715–720.CrossRefPubMedGoogle Scholar
  24. 24.
    Mayer P, Valent P, Schmidt G, Liehl E, Bettelheim P. The in vivo effects of recombinant human interleukin-3: demonstration of basophil differentiation factor, histamine-producing activity, and priming of GM-CSF-responsive progenitors in non-human primates.Blood. 1989;74:613–621.PubMedGoogle Scholar
  25. 25.
    Saito H, Hatake K, Dvorak A, et al. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins.Proc Natl Acad Sci U S A. 1988;85:2288–2292.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Clutterbuck E, Hirst E, Sanderson C. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GM-CSF.Blood. 1989;73:1504–1512.PubMedGoogle Scholar
  27. 27.
    Ema H, Suda T, Nagayoshi K, Miura Y, Civin C, Nakauchi H. Target cells for granulocyte colony-stimulating factor, Interleukin-3, and Interleukin-5 in differentiation pathways of neutrophils and eosinophils.Blood. 1990;76:1956–1961.PubMedGoogle Scholar
  28. 28.
    Budel L, Touw I, Delwel R, Clark S, Löwenberg B. Interleukin-3 and granulocyte-monocyte colony-stimulating factor receptors on human acute myelocytic leukemia cells and relationship to the proliferative response.Blood. 1989;74:565–571.PubMedGoogle Scholar
  29. 29.
    Toba K, Koike T, Shibata A, et al. Novel technique for the direct flow cytofluorometric analysis of human basophils in unseparated blood and bone marrow, and the characterization of phenotype and peroxidase of human basophil.Cytometry. 1999;35:249–259.CrossRefPubMedGoogle Scholar
  30. 30.
    Kurosawa H, Eguchi M, Sakakibara H, Takahashi H, Furukawa T. Ultrastructural cytochemistry of congenital basophilic leukemia.Am J Pediatr Hematol Oncol. 1987;9:27–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Sigmund R, Vogelsang H, Machnik A, Herrmann D. Surface membrane antigen alteration on blood basophils in patients with Hymenoptera venom allergy under immunotherapy.J Allergy Clin Immunol. 2000;106:1190–1195.CrossRefGoogle Scholar
  32. 32.
    Bühring H-J, Simmons P, Pudney M. et al. The monoclonal antibody 97A6 a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors.Blood. 1999;94:2343–2356.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Koubek K, Kumberova A, Stary J, et al. Expression of cytokine receptors on different myeloid leukemic cells.Neoplasma. 1998;45:198–203.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Akihiko Yokohama
    • 1
  • Norifumi Tsukamoto
    • 1
  • Nahoko Hatsumi
    • 1
  • Miwa Suto
    • 1
  • Tohru Akiba
    • 1
  • Hideki Uchiumi
    • 1
  • Tadashi Maehara
    • 1
  • Takafumi Matsushima
    • 1
  • Masamitsu Karasawa
    • 2
  • Hirokazu Murakami
    • 3
  • Shougo Shinonome
    • 4
  • Hirohisa Saito
    • 5
  • Yoshihisa Nojima
    • 1
  1. 1.Third Department of Internal MedicineGunma University, School of MedicineGunma
  2. 2.Transfusion ServiceGunma UniversityGunma
  3. 3.School of Health Science, Faculty of MedicineGunma UniversityGunma
  4. 4.Fujioka General HospitalFujioka, Gunma
  5. 5.Department of Allergy and the Department of Experimental SurgeryNational Children’s Medical Research CenterTokyoJapan

Personalised recommendations