Advertisement

International Journal of Hematology

, Volume 75, Issue 3, pp 228–236 | Cite as

Hematopoietic Stem Cell Gene Therapy

  • David W. Emery
  • Tamon Nishino
  • Ken Murata
  • Michalis Fragkos
  • George Stamatoyannopoulos
Progress in Hematology

Abstract

Gene therapy applications that target hematopoietic stem cells (HSCs) offer great potential for the treatment of hematologic disease. Despite this promise, clinical success has been limited by poor rates of gene transfer, poor engraftment of modified cells, and poor levels of gene expression. We describe here the basic approach used for HSC gene therapy, briefly review some of the seminal clinical trials in the field, and describe several recent advances directed toward overcoming these limitations.

Key words

Gene therapy Hematopoiesis Stem cells Virus vectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cline MJ, Stang H, Mercola K, et al. Gene transfer in intact animals.Nature. 1980;284:422–425.PubMedCrossRefGoogle Scholar
  2. 2.
    Friedmann T. The origins, evolution and directions of human gene therapy. In: Friedmann T, ed.The Development of Human Gene Therapy. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1999:1–20.Google Scholar
  3. 3.
    Ferrari G, Rossini S, Giavazzi R, et al. An in vivo model of somatic cell gene therapy for human severe combined immunodeficiency.Science. 1991;251:1363–1366.PubMedCrossRefGoogle Scholar
  4. 4.
    Blaese RM, Culver KW, Miller AD, et al. T-lymphocyte directed gene therapy for ADA-SCID: initial trial results after 4 years.Science. 1995;270:475–480.PubMedCrossRefGoogle Scholar
  5. 5.
    Kohn DB, Hershfield MS, Carbonaro D, et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates.Nat Med. 1998;4:775–780.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation.Lancet. 1993;341:85–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.Science. 2000;288:669–672.PubMedCrossRefGoogle Scholar
  8. 8.
    Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID defect without PEG-ADA therapy by stem/progenitor cell gene therapy combined with a non-myeloablative conditioning.Blood. 2001;98:780a-781a.Google Scholar
  9. 9.
    Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population.Proc Natl Acad Sci U S A. 1992;89:2804–2808.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Thomas ED. Landmarks in the development of hematopoietic cell transplantation.World J Surg. 2000;24:815–818.PubMedCrossRefGoogle Scholar
  11. 11.
    Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor.Blood. 1990;76:2153–2158.PubMedGoogle Scholar
  12. 12.
    Dreger P, Suttorp M, Haferlach T, Loffler H, Schmitz N, Schroyens W. Allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells for treatment of engraftment failure after bone marrow transplantation.Blood. 1993;81:1404–1407.PubMedGoogle Scholar
  13. 13.
    Matsunaga T, Sakamaki S, Kohgo Y, Ohi S, Hirayama Y, Niitsu Y. Recombinant human granulocyte colony-stimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation.Bone Marrow Transplant. 1993;11:103–108.PubMedGoogle Scholar
  14. 14.
    Shpall EJ, Cagnoni PJ, Bearman SI, Ross M, Jones RB. Peripheral blood stem cells for autografting.Annu Rev Med. 1997;48:241–251.PubMedCrossRefGoogle Scholar
  15. 15.
    Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, et al. Retrovirally marked CD34- enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation.Blood. 1995;85:3048–3057.PubMedGoogle Scholar
  16. 16.
    Dunbar CE, Seidel NE, Doren S, et al. Improved retroviral gene transfer into murine and rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granu-locyte colony-stimulating factor.Proc Natl Acad Sci U S A. 1996;93:11871–11876.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration.Blood. 2001;97:3313–3314.PubMedCrossRefGoogle Scholar
  18. 18.
    Lu L, Xiao M, Shen RN, Grigsby S, Broxmeyer HE. Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential.Blood. 1993;81:41–48.PubMedGoogle Scholar
  19. 19.
    Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation.Exp Hematol. 2000;28:1197–1205.PubMedCrossRefGoogle Scholar
  20. 20.
    Parkman R, Weinberg K, Crooks G, Nolta J, Kapoor N, Kohn D. Gene therapy for adenosine deaminase deficiency.Annu Rev Med. 2000;51:33–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Repka T, Weisdorf DJ. Nonmyeloablative HPC transplantation.Transfusion. 2000;40:758–760.PubMedCrossRefGoogle Scholar
  22. 22.
    Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ. Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model.Blood. 1997;89:4013–4020.PubMedGoogle Scholar
  23. 23.
    Maris M, Sandmaier BM, Maloney DG, et al. Non-myeloablative hematopoietic stem cell transplantation.Biol Blood Marrow Transplant. 1999;5:316–321.CrossRefGoogle Scholar
  24. 24.
    Storb R, Yu C, Barnett T, et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosup-pression after marrow transplantation.Blood. 1999;94:1131–1136.PubMedGoogle Scholar
  25. 25.
    Miller AD, Eckner RJ, Jolly DJ, Friedmann T, Verma IM. Expression of retrovirus encoding human HPRT in mice.Science. 1983;225:630–632.CrossRefGoogle Scholar
  26. 26.
    Miller AD, Rosman GJ. Improved retroviral vectors for gene transfer and expression.BioTechniques. 1989;7:980–890.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yee JK. Retroviral vectors. In: Friedmann T, ed.The Development of Human Gene Therapy. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1999:21–45.Google Scholar
  28. 28.
    Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production.Mol Cell Biol. 1986;6:2895–2902.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Markowitz D, Goff S, Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids.J Virol. 1988;62:1120–1124.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller AD, Miller DG, Garcia JV, Lynch CM. Use of retroviral vectors for gene transfer and expression.Methods Enzymol. 1993;217:581–599.PubMedCrossRefGoogle Scholar
  31. 31.
    Miller AD, Whelan J. Progress in transcriptionally targeted and regulatable vectors for gene therapy.Hum Gene Ther. 1997;8:803–815.PubMedCrossRefGoogle Scholar
  32. 32.
    Karlsson S, Papayannopoulou, T, Schweiger SG, Stamatoy-annopoulos G, Nienhuis AW. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein.Proc Natl Acad Sci U S A. 1987;84:2411–2415.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Emery DW, Morrish F, Li Q, Stamatoyannopoulos G. Analysis of γ-globin expression cassettes in retrovirus vectors.Hum Gene Ther. 1999;10:877–888.PubMedCrossRefGoogle Scholar
  34. 34.
    Challita PM, Skelton D, El-Khoueiry A, Yu XJ, Weinberg K, Kohn DB. Multiple modifications in cis elements in the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells.J Virol. 1995;69:748–755.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Robbins PB, Yu XJ, Skelton DM, et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells.J Virol. 1997;71:9466–9474.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hawley RG, Lieu FH, Fong AZ, Hawley TS. Versatile retroviral vectors for potential use in gene therapy.Gene Ther. 1994;1:136–138.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Allay JA, Persons DA, Galipeau J, et al. In vivo selection of retro-virally transduced hematopoietic stem cells.Nat Med. 1998;4:1136–1143.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kalberer CP, Pawliuk R, Imren S, et al. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-glo-bin in engrafted mice.Proc Natl Acad Sci U S A. 2000;97:5411–5415.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cheng L, Du C, Lavau C, et al. Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny.Blood. 1998;92:83–92.PubMedGoogle Scholar
  40. 40.
    Bodine DM, Karlsson S, Nienhuis AW. Combination of interleukin 3 and 6 preserves stem cell function in culture and enhances retro-virus-mediated gene transfer into hematopoietic stem cells.Proc Natl Acad Sci U S A. 1989;86:8897–8901.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bodine DM, Barette S, Seidel N, Orlic D, Miller AD. Transduction of mouse hematopoietic stem cells is more efficient with 10A1 retrovirus vectors than with amphotropic vectors.Stem Cells. 2000;18:152–153.PubMedCrossRefGoogle Scholar
  42. 42.
    Emery DW, Andrews RG, Papayannopoulou T. Differences among nonhuman primates in susceptibility to bone marrow progenitor transduction with retrovirus vectors.Gene Ther. 2000;7:359–367.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiem HP, Heyward S, Winkler A, et al. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons.Blood. 1997;90:4638–4645.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Miller AD, Garcia VJ, von Shur N, Lynch CM, Wilson C, Eiden MV. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus.J Virol. 1991;65:2220–2224.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Orlic D, Girard LJ, Jordan CT, Anderson SM, Cline AP, Bodine DM. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction.Proc Natl Acad Sci U S A. 1996;93:11097–11102.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kelly PF, Vandergriff J, Nathwani A, Nienhuis AW, Vanin EF. Highly efficient gene transfer into cord blood nonobese diabetic/ severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein.Blood. 2000;96:1206–1214.PubMedGoogle Scholar
  47. 47.
    Goerner M, Horn PA, Peterson L, et al. Sustained multilineage gene persistence and expression in dogs transplanted with CD34(+) marrow cells transduced by RD114-pseudotype oncoretrovirus vectors.Gene Ther. 2001;98:2065–2070.Google Scholar
  48. 48.
    Barrette S, Douglas J, Orlic D, et al. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors.Mol Ther. 2000;1:330–338.PubMedCrossRefGoogle Scholar
  49. 49.
    Nolta JA, Kohn DB. Comparison of the effects of growth factors on retroviral-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells.Hum Gene Ther. 1990;1:257–268.PubMedCrossRefGoogle Scholar
  50. 50.
    Kiem HP, Andrews RG, Morris J, et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor.Blood. 1998;92:1878–1886.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells.Nat Med. 1996;2:876–882.PubMedCrossRefGoogle Scholar
  52. 52.
    Donahue RE, Sorrentino BP, Hawley RG, An DS, Chen IS, Wersto RP. Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in nonhuman primate CD34+ cells.Mol Ther. 2001;3:359–367.PubMedCrossRefGoogle Scholar
  53. 53.
    Sanyal A, Schuening FG. Increased gene transfer into human cord blood cells by centrifugation-enhanced transduction in fibronectin fragment-coated tubes.Hum Gene Ther. 1999;10:2859–2868.PubMedCrossRefGoogle Scholar
  54. 54.
    Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science. 1996;272:263–267.PubMedCrossRefGoogle Scholar
  55. 55.
    Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. A packaging cell line for lentivirus vectors.J Virol. 1999;73:576–584.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. HIV-1 genome nuclear import is mediated by a central DNA flap.Cell. 2000;101:173–185.PubMedCrossRefGoogle Scholar
  57. 57.
    May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin.Nature. 2000;406:82–86.PubMedCrossRefGoogle Scholar
  58. 58.
    Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy.Science. 2001;294:2368–2371.PubMedCrossRefGoogle Scholar
  59. 59.
    Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.Science. 1999;283:682–686.PubMedCrossRefGoogle Scholar
  60. 60.
    Hirata RK, Miller AD, Andrews RG, Russell DW. Transduction of hematopoietic cells by foamy virus vectors.Blood. 1996;88:3654–3661.PubMedGoogle Scholar
  61. 61.
    Russell DW, Miller AD. Foamy virus vectors.J Virol. 1996;70:217–222.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Trobridge GD, Russell DW. Helper-free foamy virus vectors.Hum Gene Ther. 1998;9:2517–2525.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Vassilopoulos G, Trobridge GD, Josephson NC, Russell DW. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors.Blood. 2001;98:604–609.PubMedCrossRefGoogle Scholar
  64. 64.
    Josephson NC, Vassilopoulos G, Trobridge GD, et al. Transduction of SCID repopulating cells by a human foamy virus vector.Mol Ther. 2001;5:S302.Google Scholar
  65. 65.
    Robbins PD, Tahara H, Ghivizzani SC. Viral vectors for gene therapy.Trends Biotechnol. 1998;16:35–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells.Curr Top Microbiol Immunol. 1992;158:97–129.PubMedGoogle Scholar
  67. 67.
    Allen JM, Halbert CL, Miller AD. Improved adeno-associated virus vector production with transfection of a single helper adenovirus gene, E4orf6.Mol Ther. 2000;1:88–95.PubMedCrossRefGoogle Scholar
  68. 68.
    Rutledge EA, Russell DW. Adeno-associated virus vector integration junctions.J Virol. 1997;71:8429–8436.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Fisher-Adams G, Wong KK, Podsakoff G, Forman SJ, Chatterjee S. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.Blood. 1996;88:492–504.PubMedGoogle Scholar
  70. 70.
    Russell DW, Kay MA. Adeno-associated virus vectors and hematology.Blood. 1999;94:864–874.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hirata RK, Russell D. Design and packaging of adeno-associated virus gene targeting vectors.J Virol. 2000;74:4612–4620.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector.J Virol. 2000;74:2567–2583.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lieber A, Steinwaerder DS, Carlson CA, Kay MA. Integrating ade-novirus-adeno-associated virus hybrid vectors devoid of all viral genes.J Virol. 1999;73:9314–9324.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Karpen GH. Position-effective variegation and the new biology of heterochromatin.Curr Opin Genet Dev. 1994;4:281–291.PubMedCrossRefGoogle Scholar
  75. 75.
    Neff T, Shotkoski F, Stamatoyannopoulos G. Stem cell gene therapy, position effects and chromatin insulators.Stem Cells. 1997;15(suppl 1):265–271.PubMedGoogle Scholar
  76. 76.
    Rivella S, Sadelain M. Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and trans-gene silencing.Semin Hematol. 1998;35:112–125.PubMedGoogle Scholar
  77. 77.
    Raftopoulos H, Ward M, Leboulch P, Bank A. Long-term transfer and expression of the human β-globin gene in a mouse transplant model.Blood. 1997;90:3414–3422.PubMedGoogle Scholar
  78. 78.
    Lung Hy, Meeus IS, Weinberg RS, Atweh GF. In vivo silencing of the human γ-globin gene in murine erythroid cells following retroviral transduction.Blood Cells Mol Dis. 2000;26:613–619.PubMedCrossRefGoogle Scholar
  79. 79.
    Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G. A chromatin insulator protects retrovirus vectors from position effects.Proc Natl Acad Sci U S A. 2000;97:9150–9155.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites.J Virol. 2000;74:4679–4687.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Emery DW, Stamatoyannopoulos G. Stem cell gene therapy for the β-chain hemoglobinopathies—problems and progress.Ann NY Acad Sci. 1999;872:94–107.PubMedCrossRefGoogle Scholar
  82. 82.
    Bell AC, Felsenfeld G. Stopped at the border: boundaries and insulators.Curr Opin Genet Dev. 1999;9:191–198.PubMedCrossRefGoogle Scholar
  83. 83.
    Udvardy A. Dividing the empire: boundary chromatin elements delimit the territory of enhancers.EMBO J. 1999;18:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Prioleau MN, Nony P, Simpson M, Felsenfeld G. An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene.EMBO J. 1999;18:4035–4048.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chung JH, Bell AC, Felsenfeld G. Characterization of the chicken pj-globin insulator.Proc Natl Acad Sci U S A. 1997;94:575–580.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chung JH, Whiteley M, Felsenfeld G. A 5′ element of the chicken pj-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila.Cell. 1993;74:505–514.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang Y, DeMayo FJ, Tsai SY, O’Malley BW. Ligand-inducible and liver-specific target gene expression in transgenic mice.Nat Biotechnol. 1997;15:239–243.PubMedCrossRefGoogle Scholar
  88. 88.
    Taboit-Dameron F, Malassagne B, Viglietta C, et al. Association of the 5′ HS4 sequence of the chicken β-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits.Transgenic Res. 1999;8:223–235.PubMedCrossRefGoogle Scholar
  89. 89.
    Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators.Cell. 1999;98:387–396.PubMedCrossRefGoogle Scholar
  90. 90.
    Yannaki E, Emery DW, Tubb J, Stamatoyannopoulos G. Topological constraints governing the use of a chicken HS4 insulator in retrovirus vectors [abstract].Mol Ther. 2000;1(pt 2):S138.Google Scholar
  91. 91.
    Emery DW, Yannaki E, Nishino T, Tubb J, Li Q, Stamatoyannopoulos G. Flanking an oncoretrovirus vector for human gamma globin with a chromatin insulator greatly reduces gene silencing in vivo [abstract].Mol Ther. 2001;3:S150.Google Scholar
  92. 92.
    Chen CJ, Chin JE, Ueda K, et al. Internal duplication and homology with bacterial transport proteins in the MDR1 (P-glycopro-tein) gene from multidrug-resistant human cells.Cell. 1986;47:381–389.PubMedCrossRefGoogle Scholar
  93. 93.
    Pastan I, Gottesman MM, Ueda K, Lovelace E, Rutherford AV, Willingham MC. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells.Proc Natl Acad Sci U S A. 1988;85:4486–4490.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Galski H, Sullivan M, Willingham MC, et al. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of trans-genic mice: resistance to daunomycin-induced leukopenia.Mol Cell Biol. 1989;9:4357–4363.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mickisch GH, Licht T, Merlino GT, Gottesman MM, Pastan I. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity.Cancer Res. 1991;51:5417–5424.PubMedGoogle Scholar
  96. 96.
    Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1.Science. 1992;257:99–103.PubMedCrossRefGoogle Scholar
  97. 97.
    Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemo-protection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation.J Clin Oncol. 1998;16:165–172.PubMedCrossRefGoogle Scholar
  98. 98.
    Hanania EG, Giles RE, Kavanagh J, et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy.Proc Natl Acad Sci U S A. 1996;93:15346–15351.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Blau CA, Neff T, Papayannopoulou T. Cytokine prestimulation as a gene therapy strategy: implications for using the MDR1 gene as a dominant selectable marker.Blood. 1997;89:146–154.PubMedGoogle Scholar
  100. 100.
    Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino B P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice.Blood. 1998;92:2269–2279.PubMedGoogle Scholar
  101. 101.
    Sellers SE, Tisdale JF, Agricola BA, et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells.Blood 2001;97:1888–1891.PubMedCrossRefGoogle Scholar
  102. 102.
    Simonsen CC, Levinson AD. Isolation and expression of an altered mouse dihydrofolate reductase cDNA.Proc Natl Acad Sci U S A. 1983;80:2495–2499.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpres-sion mediates very rapid stem cell regeneration and competitive hematopoietic repopulation.Exp Hematol. 2001;29:1125–1134.PubMedCrossRefGoogle Scholar
  104. 104.
    Ito K, Ueda Y, Kokubun M, et al. Development of a novel selective amplifier gene for controllable expansion of transduced hemato-poietic cells.Blood. 1997;90:3884–3892.PubMedGoogle Scholar
  105. 105.
    Matsuda KM, Kume A, Ueda Y, Urabe M, Hasegawa M, Ozawa K. Development of a modified selective amplifier gene for hemato-poietic stem cell gene therapy.Gene Ther. 1999;6:1038–1044.PubMedCrossRefGoogle Scholar
  106. 106.
    Xu R, Kume A, Matsuda KM, et al. A selective amplifier gene for tamoxifen-inducible expansion of hematopoietic cells.J Gene Med. 1999;1:236–244.PubMedCrossRefGoogle Scholar
  107. 107.
    Zeng H, Masuko M, Jin L, Neff T, Otto KG, Blau CA. Receptor specificity in the self-renewal and differentiation of primary multi-potential hemopoietic cells.Blood. 2001;98:328–334.PubMedCrossRefGoogle Scholar
  108. 108.
    Blau CA, Peterson KR, Drachman JG, Spencer DM. A proliferation switch for genetically modified cells.Proc Natl Acad Sci U S A. 1997;94:3076–3081.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jin L, Asano H, Blau CA. Stimulating cell proliferation through the pharmacologic activation of c-kit.Blood. 1998;91:890–897.PubMedGoogle Scholar
  110. 110.
    Jin L, Siritanaratkul N, Emery DW, et al. Targeted expansion of genetically modified bone marrow cells.Proc Natl Acad Sci U S A. 1998;95:8093–8097.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jin L, Zeng H, Chien S, et al. In vivo selection using a cell-growth switch.Nat Genet. 2000;26:64–66.PubMedCrossRefGoogle Scholar
  112. 112.
    Richard RE, Wood B, Zeng H, Jin L, Papayannopoulou T, Blau CA. Expansion of genetically modified primary human hemopoi-etic cells using chemical inducers of dimerization.Blood. 2000;95:430–436.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • David W. Emery
    • 1
  • Tamon Nishino
    • 1
  • Ken Murata
    • 1
  • Michalis Fragkos
    • 2
  • George Stamatoyannopoulos
    • 1
  1. 1.Division of Medical GeneticsUniversity of Washington Department of MedicineSeattle, WashingtonUSA
  2. 2.Department of Basic SciencesUniversity of Crete School of Medicine and Institute of Molecular Biology and BiotechnologyHeraklion, CreteGreece

Personalised recommendations