International Journal of Hematology

, Volume 75, Issue 2, pp 178–181 | Cite as

MLL Gene Rearrangement in Acute Myelogenous Leukemia After Exposure to Tegafur/Uracil

  • Toshihiro Fukushima
  • Nobuyuki Yoshio
  • Yutaka Noto
  • Hiroshi Kida
Case Report


We report a case of acute myelogenous leukemia (AML) withMLL (myeloid-lymphoid leukemia or mixed-lineage leukemia) gene rearrangement after exposure to tegafur/uracil. Cytogenetic and clinical findings in this patient: t(11;17) (q23;q25), AML-M4 morphology, development of AML within a short latent period after first exposure to tegafur/uracil, and good response to remission induction chemotherapy but short remission duration, have been considered typical features of therapy-related acute myelogenous leukemia (t-AML) after exposure to topoisomerase II—targeting agents. This case report suggests that t-AML may develop after exposure to tegafur/uracil and thatMLL gene rearrangement may not necessarily be specific to t-AML after exposure to topoisomerase II—targeting agents.

Key words

Therapy-related acute myelogenous leukemia Tegafur/uracil Fluorouracil MLL gene rearrangement t(11,17) (q23,q25) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Le Beau MM, Albain KS, Larson RA, et al. Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7.J Clin Oncol. 1986;4:325–345.CrossRefPubMedGoogle Scholar
  2. 2.
    Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia.Blood. 1995;86:3542–3552.PubMedGoogle Scholar
  3. 3.
    Pedersen-Bjergaard J, Philip P, Larsen SO, et al. Therapy-related myelodysplasia and acute myeloid leukemia. Cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series.Leukemia. 1993;7:1975–1986.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gill Super HJ, McCabe NR, Thirman MJ, et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II.Blood. 1993;82:3705–3711.Google Scholar
  5. 5.
    Ratain MJ, Kaminer LS, Bitran JD, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung.Blood. 1987;70:1412–1417.PubMedGoogle Scholar
  6. 6.
    Ratain MJ, Rowley JD. Therapy-related acute myeloid leukemia secondary to inhibitors of topoisomerase II: from the bedside to the target genes.Ann Oncol. 1992;3:107–111.CrossRefPubMedGoogle Scholar
  7. 7.
    Nakajima T. Review of adjuvant chemotherapy for gastric cancer.World J Surg. 1995;19:570–574.CrossRefPubMedGoogle Scholar
  8. 8.
    Wada H, Hitomi S, Teramatsu T. Adjuvant chemotherapy after complete resection in non-small-cell lung cancer. West Japan Study Group for Lung Cancer Surgery.J Clin Oncol. 1996;14:1048–1054.CrossRefPubMedGoogle Scholar
  9. 9.
    Carver JH, Hatch FT, Branscomb EW. Estimating maximum limits to mutagenic potency from cytotoxic potency.Nature. 1979;279:154–156.CrossRefPubMedGoogle Scholar
  10. 10.
    Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial.Blood. 1998;92:2322–2333.PubMedGoogle Scholar
  11. 11.
    Bower M, Parry P, Carter M, et al. Prevalence and clinical correlations of MLL gene rearrangements in AML-M4/M5.Blood. 1994;84:3776–3780.PubMedGoogle Scholar
  12. 12.
    Tien HF, Hsiao CH, Tang JL, et al. Characterization of acute myeloid leukemia with MLL rearrangements—no increase in the incidence of coexpression of lymphoid-associated antigens on leukemic blasts.Leukemia. 2000;14:1025–1030.CrossRefPubMedGoogle Scholar
  13. 13.
    Takeyama K, Seto M, Uike N, et al. Therapy-related leukemia and myelodysplastic syndrome: a large-scale Japanese study of clinical and cytogenetic features as well as prognostic factors.Int J Hematol. 2000;71:144–152.PubMedGoogle Scholar
  14. 14.
    Turker A, Guler N. Therapy related acute myeloid leukemia after exposure to 5-fluorouracil: a case report.Hematol Cell Ther. 1999;41:195–196.CrossRefPubMedGoogle Scholar
  15. 15.
    Shimano S, Murayama K, Katahira H, Tsuchiya J. A retrospective study of acute myelogenous leukemia and myelodysplastic syndrome cases—clinical and hematological findings [in Japanese].Jpn J Cancer Clin. 1994;40:175–179.Google Scholar
  16. 16.
    Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T. Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver micro-somes.Drug Metab Dispos. 2000;28:1457–1463.PubMedGoogle Scholar
  17. 17.
    Heidelberger C, Danenberg PV, Moran RG. Fluorinated pyrimidines and their nucleosides.Adv Enzymol Relat Areas Mol Biol. 1983;54:58–119.PubMedGoogle Scholar
  18. 18.
    Maraschin J, Dutrillaux B, Aurias A. Chromosome aberrations induced by etoposide (VP-16) are not random.Int J Cancer. 1990;46:808–812.CrossRefPubMedGoogle Scholar
  19. 19.
    Broeker PLS, Super HG, Thirman MJ et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites.Blood. 1996;87:1912–1922.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu LF. DNA topoisomerase poisons as antitumor drugs.Annu Rev Biochem. 1989;58:351–375.CrossRefPubMedGoogle Scholar
  21. 21.
    Pommier Y, Zwelling LA, Kao-Shan CS, Whang-Peng J, Bradley MO. Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations, and cytotoxicity in Chinese hamster cells.Cancer Res. 1985;45:3143–3149.PubMedGoogle Scholar
  22. 22.
    Krynetskaia NF, Cai X, Nitiss JL, Krynetski EY, Relling MV. Thioguanine substitution alters DNA cleavage mediated by topoisomerase II.FASEB J. 2000;14:2339–2344.CrossRefPubMedGoogle Scholar
  23. 23.
    Osaka M, Rowley JD, Zeleznik-Le NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25).Proc Natl Acad Sci U S A. 1999;96:6428–6433.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Taki T, Ohnishi H, Shinohara K, et al. AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25).Cancer Res. 1999;59:4261–4265.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Megonigal MD, Rappaport EF, Jones DH, et al. T(11;22) (q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes.Proc Natl Acad Sci U S A. 1998;95:6413–6418.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Toshihiro Fukushima
    • 1
  • Nobuyuki Yoshio
    • 1
  • Yutaka Noto
    • 1
  • Hiroshi Kida
    • 1
  1. 1.Internal Medicine, National Kanazawa HospitalKanazawaJapan

Personalised recommendations