Advertisement

International Journal of Hematology

, Volume 75, Issue 2, pp 166–173 | Cite as

Quantitative Assessment of Minimal Residual Disease in Childhood Lymphoid Malignancies Using an Allele-Specific Oligonucleotide Real-Time Quantitative Polymerase Chain Reaction

  • Mitsu Tarusawa
  • Akiko Yashima
  • Mikiya Endo
  • Chihaya Maesawa
Progress in Hematology

Abstract

We developed an assay using a real-time quantitative polymerase chain reaction (RQ-PCR) for the quantitative assessment of minimal residual disease (MRD) in childhood lymphoid malignancies by using a consensus V-region probe combining a allele-specific oligonucleotide (ASO) reverse primer. Our strategy employs a set consisting of a consensus V-region probe, an ASO reverse primer, and a patient-specific forward primer for clonal antigen-receptor (IgH, immunoglobulin heavy chain; TCR, T-cell receptor) gene rearrangements (IgH-ASO and TCR-ASO RQ-PCR assays). The limit of detection in both assays was 5 copies of the target/105 cell equivalents. We tested the assays in 17 childhood malignancies (14 cases of acute lym-phoblastic leukemia and 3 of non-Hodgkin’s lymphoma). High correlation coefficients of the standard curves (>0.980) and PCR efficiency (>0.95) were achieved with all primer/probe sets. In 2 (12%) of the 17 patients, ASO primers could not be designed because there was no junctional N-sequence. The quantitative data suggest that the copy number of clonal antigen receptors markedly decreased after induction therapy in 15 of 17 patients and that 1 patient relapsed and died of the disease. Consensus probes make it possible to examine a large number of patients with only a limited number of probes. The strategy used for IgH-ASO and TCR-ASO RQ-PCR assays is accurate and reliable in the clinical prospective study of MRD in childhood lymphoid malignancies.

Key words

Acute lymphoblastic leukemia Non-Hodgkin’s lymphoma Minimal residual disease Allele-specific oligonu-cleotide Real-time quantitative PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencess

  1. 1.
    Parker BR. Leukemia and lymphoma in childhood.Radiol Clin N Am. 1997;35:1495–1516.PubMedGoogle Scholar
  2. 2.
    Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group.Blood. 2000;95:3310–3322.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90.Blood. 1999;94:3294–3306.PubMedGoogle Scholar
  4. 4.
    Reiter A, Schrappe M, Ludwig WD, et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86.Blood. 1994;84:3122–3133.PubMedGoogle Scholar
  5. 5.
    Veerman AJ, Hahlen K, Kamps WA, et al. High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia. Results of protocol ALL VI from the Dutch Childhood Leukemia Study Group.J Clin Oncol. 1996;14:911–918.CrossRefPubMedGoogle Scholar
  6. 6.
    Childhood ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia:overview of 42 trials involving 12000 randomised children. Childhood ALL Collaborative Group.Lancet. 1996;347:1783–1788.CrossRefGoogle Scholar
  7. 7.
    van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood.Lancet. 1998;352:1731–1738.CrossRefPubMedGoogle Scholar
  8. 8.
    Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia.Lancet. 1998;351:550–554.CrossRefPubMedGoogle Scholar
  9. 9.
    Gruhn B, Hongeng S, Yi H, et al. Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome.Leukemia. 1998;12:675–681.CrossRefPubMedGoogle Scholar
  10. 10.
    Mitas M, Mikhitarian K, Walters C, et al. Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel.Int J Cancer. 2001;93:162–171.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Trappen PO, Gyselman VG, Lowe DG, et al. Molecular quantification and mapping of lymph-node micrometastases in cervical cancer.Lancet. 2001;357:15–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee LG, Connell CR, Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes.Nucleic Acids Res. 1993;21:3761–3766.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Donovan JW, Ladetto M, Zou G, et al. Immunoglobulin heavychain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia.Blood. 2000;95:2651–2658.PubMedGoogle Scholar
  14. 14.
    Rasmussen T, Poulsen TS, Honore L, et al. Quantitation of minimal residual disease in multiple myeloma using an allele-specific realtime PCR assay.Exp Hematol. 2000;28:1039–1045.CrossRefPubMedGoogle Scholar
  15. 15.
    Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes.Leukemia. 1998;12:2006–2014.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Willems P, Verhagen O, Segeren C, et al. Consensus strategy to quantitate malignant cells in myeloma patients is validated in a multicenter study. Belgium-Dutch Hematology-Oncology Group.Blood. 2000;96:63–70.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gerard CJ, Olsson K, Ramanathan R, et al. Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards.Cancer Res. 1998;58:3957–3964.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Eckert C, Landt O, Taube T, et al. Potential of LightCycler technology for quantification of minimal residual disease in childhood acute lymphoblastic leukemia.Leukemia. 2000;14:316–323.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen X, Pan Q, Stow P, et al. Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay.Leukemia. 2001;15:166–170.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brumpt C, Delabesse E, Beldjord K, et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lym-phoblastic leukemia varies with age and genotype.Blood. 2000;96:2254–2261.PubMedGoogle Scholar
  21. 21.
    Campana D, Pui CH. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance.Blood. 1995;85:1416–1434.PubMedGoogle Scholar
  22. 22.
    Henze G, Fengler R, Hartmann R, et al. Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM group.Blood. 1991;78:1166–1172.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wan JH, Trainor KJ, Brisco MJ, et al. Monoclonality in B cell lym- phoma detected in paraffin wax embedded sections using the poly-merase chain reaction.J Clin Pathol. 1990;43:888–890.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ramasamy I, Brisco M, Morley A. Improved PCR method for detecting monoclonal immunoglobulin heavy chain rearrangement in B cell neoplasms.J Clin Pathol. 1992;45:770–775.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Signoretti S, Murphy M, Cangi MG, Puddu P, Kadin ME, Loda M. Detection of clonal T-cell receptor gamma gene rearrangements in paraffin-embedded tissue by polymerase chain reaction and nonradioactive single-strand conformational polymorphism analysis.Am J Pathol. 1999;154:67–75.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zemlin M, Hummel M, Anagnostopoulos I, et al. Improved polymerase chain reaction detection of clonally rearranged T-cell receptor beta chain genes.Diagn Mol Pathol. 1998;7:138–145.CrossRefPubMedGoogle Scholar
  27. 27.
    Cook GP, Tomlinson IM. The human immunoglobulin VH repertoire.Immunol Today. 1995;16:237–242.CrossRefPubMedGoogle Scholar
  28. 28.
    Artero S, Lefranc MP. The Teleostei immunoglobulin heavy IGH genes.Exp Clin Immunogenet. 2000;17:148–161.CrossRefPubMedGoogle Scholar
  29. 29.
    Tomlinson IM, Walter G, Marks JD, et al. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops.J Mol Biol. 1992;227:776–798.CrossRefPubMedGoogle Scholar
  30. 30.
    Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer-Childhood Leukemia Cooperative Group.N Engl J Med. 1998;339:591–598.CrossRefPubMedGoogle Scholar
  31. 31.
    Roberts WM, Estrov Z, Ouspenskaia MV, et al. Measurement of residual leukemia during remission in childhood acute lym-phoblastic leukemia.N Engl J Med. 1997;336:317–323.CrossRefPubMedGoogle Scholar
  32. 32.
    Levett D, Middleton P, Cole M, et al. A demographic study of the clinical significance of minimal residual disease in children with acute lymphoblastic leukemia.Med Pediatr Oncol. 2001;36:365–371.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Mitsu Tarusawa
    • 1
    • 2
  • Akiko Yashima
    • 1
  • Mikiya Endo
    • 2
  • Chihaya Maesawa
    • 1
  1. 1.Departments of PathologyIwate Medical University School of MedicineMoriokaJapan
  2. 2.Departments of PediatricsIwate Medical University School of MedicineMoriokaJapan

Personalised recommendations