International Journal of Hematology

, Volume 75, Issue 2, pp 123–128 | Cite as

Molecular Pathogenesis of Fanconi Anemia

  • Toshiyasu Taniguchi
  • Alan D. D’Andrea
Progress in Hematology


Fanconi anemia (FA) is a rare autosomal recessive chromosomal breakage disorder characterized by the childhood onset of aplastic anemia, developmental defects, cancer susceptibility, and cellular hypersensitivity to DNA—cross-linking agents. FA patients can be divided into at least 8 complementation groups (FA-A, FA-B, FA-C, FA-D1, FA-D2, FA-E, FA-F, and FA-G). FA proteins encoded by 6 cloned FA genes (FANCA,FANCC,FANCD2,FANCE,FANCF, andFANCG) cooperate in a common pathway, culminating in the monoubiquitination of FANCD2 protein and colocalization of FANCD2 and BRCA1 proteins in nuclear foci. These BRCA1 foci have been implicated in the process of homologous recombination-mediated DNA repair. In this review, we will summarize the current progress in the field of FA research and highlight some of the potential functions of the FA pathway in DNA-damage response.

Key words

Fanconi anemia Checkpoint DNA repair Ubiquitin BRCA1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Andrea AD, Grompe M. Molecular biology of Fanconi anemia: implications for diagnosis and therapy.Blood. 1997;90:1725–1736.PubMedGoogle Scholar
  2. 2.
    Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio A, Auerbach AD. Hematologic abnormalities in Fanconi anemia. An International Fanconi Anemia Registry study.Blood. 1994;84:1650–1655.PubMedGoogle Scholar
  3. 3.
    Alter BP. Fanconi’s anemia and malignancies.Am J Hematol. 1996;53:99–110.CrossRefPubMedGoogle Scholar
  4. 4.
    Jacobs P, Karabus C. Fanconi’s anemia. A family study with 20-year follow-up including associated breast pathology.Cancer. 1984;54:1850–1853.CrossRefPubMedGoogle Scholar
  5. 5.
    Auerbach AD, Rogatko A, Schroeder-Kurth TM. International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity.Blood. 1989;73:391–396.PubMedGoogle Scholar
  6. 6.
    Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB. Oxygen-dependence of chromosomal aberrations in Fanconi’s anaemia.Nature. 1981;290:142–143.CrossRefPubMedGoogle Scholar
  7. 7.
    Schindler D, Hoehn H. Fanconi anemia mutation causes cellular susceptibility to ambient oxygen.Am J Hum Genet. 1988;43:429–435.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Whitney MA, Royle G, Low MJ, et al. Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene.Blood. 1996;88:49–58.PubMedGoogle Scholar
  9. 9.
    Joenje H, Levitus M, Waisfisz Q, et al. Complementation analysis in Fanconi anemia: assignment of the reference FA-H patient to group A.Am J Hum Genet. 2000;67:759–762.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Timmers C, Taniguchi T, Hejna J, et al. Positional cloning of a novel Fanconi anemia gene, FANCD2.Mol Cell. 2001;7:241–248.CrossRefPubMedGoogle Scholar
  11. 11.
    Lo Ten Foe JR, Rooimans MA, Bosnoyan-Collins L, et al. Expression cloning of a cDNA for the major Fanconi anemia gene, FAA.Nat Genet. 1996;14:320–323.CrossRefPubMedGoogle Scholar
  12. 12.
    The Fanconi Anemia/Breast Cancer Consortium. Positional cloning of the Fanconi anaemia group A gene.Nat Genet. 1996;14:324–328.CrossRefGoogle Scholar
  13. 13.
    Strathdee CA, Gavish H, Shannon WR, Buchwald M. Cloning of cDNAs for Fanconi’s anaemia by functional complementation.Nature. 1992;356:763–767.CrossRefPubMedGoogle Scholar
  14. 14.
    Hejna JA, Timmers CD, Reifsteck C, et al. Localization of the Fanconi anemia complementation group D gene to a 200-kb region on chromosome 3p25.3.Am J Hum Genet. 2000;66:1540–1551.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway.Mol Cell. 2001;7:249–262.CrossRefPubMedGoogle Scholar
  16. 16.
    de Winter JP, Leveille F, van Berkel CGM, et al. Isolation of a cDNA representing the Fanconi anemia complementation group E gene.Am J Hum Genet. 2000;67:1306–1308.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    de Winter JP, Rooimans MA, van der Weel L, et al. The Fanconi anemia complementation gene FANCF encodes a novel protein with homology to ROM.Nat Genet. 2000;24:15–16.CrossRefPubMedGoogle Scholar
  18. 18.
    de Winter JP, Waisfisz Q, Rooimans MA, et al. The Fanconi anaemia group G gene is identical with human XRCC9.Nat Genet. 1998;20:281–283.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu N, Lamerdin JE, Tucker JD, et al. The humanXRCC9 gene corrects chromosomal instability and mutagen sensitivities in CHO UV40 cells.Proc Natl Acad Sci U S A. 1997;94:9232–9237.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kupfer GM, Naf D, Suliman A, Pulsipher M, D’Andrea AD. The Fanconi anemia proteins, FAA and FAC, interact to form a nuclear complex.Nat Genet. 1997;17:487–490.CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia-Higuera I, Kuang Y, Naf D, Wasik J, D’Andrea AD. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex.Mol Cell Biol. 1999;19:4866–4873.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Winter JP, van Der Weel L, de Groot J, et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG.Hum Mol Genet. 2000;9:2665–2674.CrossRefPubMedGoogle Scholar
  23. 23.
    Medhurst AL, Huber PAJ, Waisfisz Q, de Winter JP, Mathew CG. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway.Hum Mol Genet. 2001;10:423–429.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamashita T, Kupfer GM, Naf D, et al. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation.Proc Natl Acad Sci U S A. 1998;95:13085–13090.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qiao F, Moss A, Kupfer GM. Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner.J Biol Chem. 2001;276:23391–23396.CrossRefPubMedGoogle Scholar
  26. 26.
    Futaki M, Watanabe S, Kajigaya S, Liu JM. Fanconi anemia protein, FANCG, is a phosphoprotein and is upregulated with FANCA after TNF-alpha treatment.Biochem Biophys Res Commun. 2001;281:347–351.CrossRefPubMedGoogle Scholar
  27. 27.
    Moynahan ME, Cui TY, Jasin M. Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation.Cancer Res. 2001;61:4842–4850.PubMedGoogle Scholar
  28. 28.
    Weissman AM. Themes and variations on ubiquitylation.Nat Rev Mol Cell Biol. 2001;2:169–178.CrossRefPubMedGoogle Scholar
  29. 29.
    Hicke L. Protein regulation by monoubiquitin.Nat Rev Mol Cell Biol. 2001;2:195–201.CrossRefPubMedGoogle Scholar
  30. 30.
    Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.Science. 1994;266:66–71.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2.Nature. 2000;408:429–432.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Scully R, Chen J, Plug A, et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells.Cell. 1997;88:265–275.CrossRefPubMedGoogle Scholar
  33. 33.
    Chen J, Silver DP, Walpita D, et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells.Mol Cell. 1998;2:317–328.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhong Q, Chen C-F, Li S, et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response.Science. 1999;285:747–750.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures.Genes Dev. 2000;14:927–939.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination.Proc Natl Acad Sci U S A. 1999;96:11364–11369.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity.Proc Natl Acad Sci U S A. 2001;98:5134–5139.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hashizume R, Fukuda M, Maeda I, et al. The ring heterodimer Brca1-Bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation.J Biol Chem. 2001;276:14537–14540.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Joazeiro CAP, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity.Cell. 2000;102:549–552.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Siddique MA, Nakanishi K, Taniguchi T, Grompe M, D’Andrea AD. Function of the Fanconi anemia pathway in FA complementation group F and D1 cells.Exp Hematol. 2001;29:1448–1455.CrossRefPubMedGoogle Scholar
  41. 41.
    Chen M, Tomkins DJ, Auerbach W, et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia.Nat Genet. 1996;12:448–451.CrossRefPubMedGoogle Scholar
  42. 42.
    Carreau M, Gan OI, Liu L, et al. Bone marrow failure in the Fan-coni anemia group C mouse model after DNA damage.Blood. 1998;91:2737–2744.PubMedGoogle Scholar
  43. 43.
    Cheng NC, van de Vrugt HJ, van der Valk MA, et al. Mice with a targeted disruption of the Fanconi anemia homolog Fanca.Hum Mol Genet. 2000;9:1805–1811.CrossRefPubMedGoogle Scholar
  44. 44.
    Yang Y, Kuang Y, de Montes Oca R, et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9.Blood. 2001;98:3435–3440.CrossRefPubMedGoogle Scholar
  45. 45.
    Gush KA, Fu K-L, Grompe M, Walsh CE. Phenotypic correction of Fanconi anemia group C knockout mice.Blood. 2000;95:700–704.PubMedGoogle Scholar
  46. 46.
    Heinrich MC, Hoatlin ME, Zigler AJ, et al. DNA cross-linker-induced G2/M arrest in group C Fanconi anemia lymphoblasts reflects normal checkpoint function.Blood. 1998;91:275–287.PubMedGoogle Scholar
  47. 47.
    Sala-Trepat M, Rouillard D, Escarceller M, Laquerbe A, Moustacchi E, Papadopoulo D. Arrest of S-phase progression is impaired in Fanconi anemia cells.Exp Cell Res. 2000;260:208–215.CrossRefPubMedGoogle Scholar
  48. 48.
    Centurion SA, Kuo H-R, Lambert WC. Damage-resistant DNA synthesis in Fanconi anemia cells treated with a DNA cross-linking agent.Exp Cell Res. 2000;260:216–221.CrossRefPubMedGoogle Scholar
  49. 49.
    Painter RB. Radioresistant DNA synthesis: an intrinsic feature of ataxia telangiectasia.Mutat Res. 1981;84:183–190.CrossRefPubMedGoogle Scholar
  50. 50.
    Lin D-S, Kim S-T, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway.Nature. 2000;404:613–617.CrossRefPubMedGoogle Scholar
  51. 51.
    Xu B, Kim S-T, Kastan MB. Involvement of BRCA1 in S-phase and G2-phase checkpoints after ionizing radiation.Mol Cell Biol. 2001;21:3445–3450.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao S, Weng Y-C, Yuan S-SF, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products.Nature. 2000;405:473–477.CrossRefPubMedGoogle Scholar
  53. 53.
    Gatei M, Young D, Cerosaletti KM, et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure.Nat Genet. 2000;25:115–119.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu X, Ranganathan V, Weisman DS, et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response.Nature. 2000;405:477–482.CrossRefPubMedGoogle Scholar
  55. 55.
    Chen J. Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage.Cancer Res. 2000;60:5037–5039.PubMedGoogle Scholar
  56. 56.
    Cortez WJ, Wangt Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks.Science. 1999;286:1162–1166.CrossRefPubMedGoogle Scholar
  57. 57.
    Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.Proc Natl Acad Sci U S A. 2000;97:10389–10394.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Buscemi G, Savio C, Zannini L, et al. Chk2 activation dependence on Nbs1 after DNA damage.Mol Cell Biol. 2001;21:5214–5222.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response.Nature. 2000;404:201–204.CrossRefPubMedGoogle Scholar
  60. 60.
    Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis.Nature. 2001;410:842–847.CrossRefPubMedGoogle Scholar
  61. 61.
    Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.Curr Biol. 2000;10:886–895.CrossRefPubMedGoogle Scholar
  62. 62.
    Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies.J Biol Chem. 2001;276:17276–17280.CrossRefPubMedGoogle Scholar
  63. 63.
    Tibbetts RS, Cortez D, Brumbaugh KM, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress.Genes Dev. 2000;14:2989–3002.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Scully R, Chen J, Ochs RL, et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage.Cell. 1997;90:425–435.CrossRefPubMedGoogle Scholar
  65. 65.
    Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks.Mol Cell. 2001;7:263–272.CrossRefPubMedGoogle Scholar
  66. 66.
    Thyagarajan B, Campbell C. Elevated homologous recombination activity in fanconi anemia fibroblasts.J Biol Chem. 1997;272:23328–23333.CrossRefPubMedGoogle Scholar
  67. 67.
    Lundberg R, Mavinakere M, Campbell C. Deficient DNA end joining activity in extracts from fanconi anemia fibroblasts.J Biol Chem. 2001;276:9543–9549.CrossRefPubMedGoogle Scholar
  68. 68.
    Escarceller M, Rousset S, Moustacchi E, Papadopoulo D. The fidelity of double strand breaks processing is impaired in complementation groups B and D of Fanconi anemia, a genetic instability syndrome.Somat Cell Mol Genet. 1997;23:401–411.CrossRefPubMedGoogle Scholar
  69. 69.
    Escarceller M, Buchwald M, Singleton BK, et al. Fanconi anemia C gene product plays a role in the fidelity of blunt DNA end-joining.J Mol Biol. 1998;279:375–385.CrossRefPubMedGoogle Scholar
  70. 70.
    McMahon LW, Walsh CE, Lambert MW. Human a spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex.J Biol Chem. 1999;274:32904–32908.CrossRefPubMedGoogle Scholar
  71. 71.
    Hoatlin ME, Zhi Y, Ball H, et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF.Blood. 1999;94:3737–3747.PubMedGoogle Scholar
  72. 72.
    Otsuki T, Kajigaya S, Ozawa K, Liu JM. SNX5, a new member of the sorting nexin family, binds to the Fanconi anemia complementation group A protein.Biochem Biophys Res Commun. 1999;265:630–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Kruyt FAE, Hoshino T, Liu JM, Joseph P, Jaiswal AK, Youssoufian H. Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase.Blood. 1998;92:3050–3056.PubMedGoogle Scholar
  74. 74.
    Hoshino T, Wang J, Devetten MP, et al. Molecular chaperone GRP94 binds to the Fanconi anemia group C protein and regulates its intracellular expression.Blood. 1998;91:4379–4386.PubMedGoogle Scholar
  75. 75.
    Kupfer G, Yamashita T, Naf D, Suliman A, Asano S, D’Andrea AD. The Fanconi anemia protein, FAC, binds to the cyclin-dependent kinase, cdc2.Blood. 1997;90:1047–1054.PubMedGoogle Scholar
  76. 76.
    Cumming RC, Lightfoot J, Beard K, Youssoufian H, O’Brien PJ, Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1.Nat Med. 2001;7:814–820.CrossRefPubMedGoogle Scholar
  77. 77.
    Pang Q, Fagerlie S, Christianson TA, et al. The Fanconi anemia protein FANCC binds to and facilitates the activation of STAT1 by gamma interferon and hematopoietic growth factors.Mol Cell Biol. 2000;20:4724–4735.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Pang Q, Keeble W, Christianson TA, Faulkner GR, Bagby GC. FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-gamma/TNF-alpha-mediated cytotoxicity.EMBO J. 2001;20:4478–4489.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yamashita T, Barber DL, Zhu Y, Wu N, D’Andrea AD. The Fanconi anemia polypeptide FACC is localized to the cytoplasm.Proc Natl Acad Sci U S A. 1994;91:6712–6716.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hoatlin ME, Christianson TA, Keeble WW, et al. The Fanconi anemia group C gene product is located in both the nucleus and cytoplasm of human cells.Blood. 1998;91:1418–1425.PubMedGoogle Scholar
  81. 81.
    Hadjur S, Ung K, Wadsworth L, et al. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase.Blood. 2001;98:1003–1011.CrossRefPubMedGoogle Scholar
  82. 82.
    Pang Q, Christianson TA, Keeble W, et al. The Fanconi anemia complementation group C gene product: structural evidence of multifunctionality.Blood. 2001;98:1392–1401.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  1. 1.Department of Pediatric OncologyDana-Farber Cancer InstituteBoston, MassachusettsUSA

Personalised recommendations