International Journal of Hematology

, Volume 75, Issue 1, pp 55–62 | Cite as

The Generation of Immunocompetent Dendritic Cells From CD34+ Acute Myeloid or Lymphoid Leukemia Cells

  • Takahide Tsuchiya
  • Masao Hagihara
  • Yasuhito Shimakura
  • Yoko Ueda
  • Balgansuren Gansuvd
  • Batmunkh Munkhbat
  • Hiroyasu Inoue
  • Kei Tazume
  • Shunichi Kato
  • Tomomitsu Hotta
Case Report


The ability of CD34+ leukemic cells to differentiate to dendritic cells (DCs) was investigated in 18 acute myeloid leukemia (AML) and 4 lymphoid leukemia (ALL) patients. The generation of DCs was determined by the expression of DC-associated CD1a or CD83 (more than 30%) with costimulatory molecules, by CD80 antigens (>20%), and by the exhibition of allostim-ulatory activity. In the AML patients, allostimulatory mature DCs were generated from 3 of 9 M0 or M1, 2 of 5 M2, 2 of 4 M4 or M5, and 3 of 4 ALL (L2) cases. In total, DCs were more efficiently induced from cases expressing over 75% of CD34+ among whole bone marrow mononuclear cells (8 of 12), compared with those under 75% (2 of 10; P < .05). B-cell (CD19), natural killer (NK)—cell (CD56), or T-cell (CD7) lineage markers, which were aberrantly expressed on the blasts, were rarely found on leukemic DCs at the end of the culture period, and myeloid (CD13, CD33), not lymphoid (CD10), markers were shown on ALL-derived DCs. In Philadelphia chromosome—positive ALL or AML patients with t (8;21), DCs were confirmed to be of leukemic origin by fluorescence in situ hybridization analysis.

Key words

Dendritic cells Leukemia CD34 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szabolcs P, Moore MA, Young JW. Expansion of immunostimula- tory dendritic cells among the myeloid progeny of human CD34+ 62 bone marrow precursors cultured with c-kit ligand, granulocyte- macrophage colony-stimulating factor, and TNF-alpha.J Immunol. 1995;154:5851–5861.PubMedGoogle Scholar
  2. 2.
    Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages.J Leukoc Biol. 1992;52:274–281.CrossRefPubMedGoogle Scholar
  3. 3.
    Bernhard H, Disis ML, Heimfeld S, Hand S, Gralow JR, Cheever MA. Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood.Cancer Res. 1995;55:1099–1104.PubMedGoogle Scholar
  4. 4.
    Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells.Proc Natl Acad Sci U S A. 1996;93:2588–2592.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pickl WF, Majdic O, Kohl P, et al. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes.J Immunol. 1996;157:3850–3859.PubMedGoogle Scholar
  6. 6.
    Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA. CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells.Blood. 1999;94:2048–2055.PubMedGoogle Scholar
  7. 7.
    Choudhury BA, Liang JC, Thomas EK, et al. Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses.Blood. 1999;93:780–786.PubMedGoogle Scholar
  8. 8.
    Oehler L, Berer A, Kollars M, et al. Culture requirements for induction of dendritic cell differentiation in acute myeloid leukemia.Ann Hematol. 2000;79:355–362.CrossRefPubMedGoogle Scholar
  9. 9.
    Kohler T, Plettig R, Wetzstein W, et al. Cytokine-driven differentiation of blasts from patients with acute myelogenous and lym- phoblastic leukemia into dendritic cells.Stem Cells. 2000;18:139–147.CrossRefPubMedGoogle Scholar
  10. 10.
    Brouwer RE, Menno van der Hoorn, Hanneke C, Kluin-Nelemans, et al. The generation of dendritic-like cells with increased allostim- ulatory function from acute myeloid leukemia cells of various FAB subclasses.Hum Immunol. 2000;61:565–574.CrossRefPubMedGoogle Scholar
  11. 11.
    Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D. Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cyto- toxic T cells against autologous leukemias.Eur J Immunol. 1999;29:2567–2578.CrossRefPubMedGoogle Scholar
  12. 12.
    Smit WM, Rijnbeek M, van Bergen CA, et al. Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells.Hum Immunol. 1997;53:216–223.CrossRefPubMedGoogle Scholar
  13. 13.
    Staveley-O’Carroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression.Proc Natl Acad Sci U S A 1998;95:1178–1183.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zheng Z, Takahashi M, Aoki S, et al. Expression patterns of cos- timulatory molecules on cells derived from human hematological malignancies.J Exp Clin Cancer Res. 1998;17:251–258.PubMedGoogle Scholar
  15. 15.
    Mutis T, Schrama E, Melief CJ, Goulmy E. CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens.Blood. 1998;92:1677–1684.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation.Science. 1999;283:1183–1186.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    de Greef GE, Hagemeijer A, Morgan R, et al. Identical fusion transcript associated with different breakpoints in the AML1 gene in simple and variant t(8;21) acute myeloid leukemia.Leukemia. 1995;9:282–287.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wells SJ, Phillips CN, Farhi DC. Detection of BCRabl in acute leukemia by molecular and cytogenetic methods.Mol Diagn. 1996;1:305–313.CrossRefPubMedGoogle Scholar
  19. 19.
    Kochman S, Bernard J. Antitumour immune response and cancer vaccination: the critical role of dendritic cells.Curr Med Res Opin. 1999;15:321–326.CrossRefPubMedGoogle Scholar
  20. 20.
    Matasic R, Dietz AB, Vuk-Pavlovic S. Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells.J Leukoc Biol. 1999;6(6):909–914.CrossRefGoogle Scholar
  21. 21.
    Piemonti L, Monti P, Allavena P, et al. Glucocorticoids affect human dendritic cell differentiation and maturation.J Immunol. 1999;162:6473–6481.PubMedGoogle Scholar
  22. 22.
    Kiertscher SM, Luo J, Dubinett SM, Roth MD. Tumors promote altered maturation and early apoptosis of monocyte-derived den- dritic cells.J Immunol. 2000;164:1269–1276.CrossRefPubMedGoogle Scholar
  23. 23.
    Steptoe RJ, Fu F, Li W, et al. Augmentation of dendritic cells in murine organ donors by Flt3 ligand alters the balance between transplant tolerance and immunity.J Immunol. 1997;159:5483–5491.PubMedGoogle Scholar
  24. 24.
    Pawlowska AB, Hashino S, McKenna H, Weigel BJ, Taylor PA, Blazar BR. In vitro tumor-pulsed or in vivo Flt3 ligand-generated dendritic cells provide protection against acute myelogenous leukemia in nontransplanted or syngeneic bone marrow-transplanted mice.Blood. 2001;97:1474–1482.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang A, Braun SE, Sonpavde G, Cornetta K. Antileukemic activity of Flt3 ligand in murine leukemia.Cancer Res. 2000;60:1895–1900.PubMedGoogle Scholar
  26. 26.
    Pulendran B, Banchereau J, Burkeholder S, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo.J Immunol. 2000;165:566–572.CrossRefPubMedGoogle Scholar
  27. 27.
    Robinson SP, English N, Jaju R, Kearney L, Knight SC, Reid CD. The in-vitro generation of dendritic cells from blast cells in acute leukaemia.Br J Haematol. 1998;103:763–771.PubMedGoogle Scholar
  28. 28.
    Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset.Immunity. 1995;3:459–473.CrossRefPubMedGoogle Scholar
  29. 29.
    Marquez C, Trigueros C, Franco JM, et al. Identification of a common developmental pathway for thymic natural killer cells and dendritic cells.Blood. 1998;91:2760–2771.PubMedGoogle Scholar
  30. 30.
    Dick JE, Lapidot T, Pflumio F. Transplantation of normal and leu- kemic human bone marrow into immune-deficient mice: development of animal models for human hematopoiesis.Immunol Rev. 1991;124:25–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang JC, Lapidot T, Cashman JD, et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase.Blood. 1998;91:2406–2414.PubMedGoogle Scholar
  32. 32.
    Ryncarz RE, Anasetti C. Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells.Blood. 1998;91:3892–3900.PubMedGoogle Scholar
  33. 33.
    Rondelli D, Lemoli RM, Ratta M, et al. Rapid induction of CD40 on a subset of granulocyte colony-stimulating factor-mobilized CD34(+) blood cells identifies myeloid committed progenitors and permits selection of nonimmunogenic CD40(-) progenitor cells.Blood. 1999;94:2293–2300.PubMedGoogle Scholar
  34. 34.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.Nat Med 1998;4:328–332.CrossRefPubMedGoogle Scholar
  35. 35.
    Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells.Cancer Res. 2000;60:1028–1034.PubMedGoogle Scholar
  36. 36.
    Osman Y, Takahashi M, Zheng Z, et al. Generation of bcr-abl specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its applicability for donor leukocyte transfusions in marrow grafted CML patients.Leukemia. 1999;13:166–174.CrossRefPubMedGoogle Scholar
  37. 37.
    Nieda M, Nicol A, Kikuchi A, et al. Dendritic cells stimulate the expansion of bcr-abl specific CD8+ T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia.Blood. 1998;91:977–983.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Takahide Tsuchiya
    • 1
  • Masao Hagihara
    • 1
  • Yasuhito Shimakura
    • 1
  • Yoko Ueda
    • 1
  • Balgansuren Gansuvd
    • 1
  • Batmunkh Munkhbat
    • 2
  • Hiroyasu Inoue
    • 3
  • Kei Tazume
    • 1
  • Shunichi Kato
    • 2
    • 3
  • Tomomitsu Hotta
    • 1
  1. 1.Department of Hematology and RheumatologyTokai University School of MedicineKanagawaJapan
  2. 2.Research Center for Genetic Engineering and Cell TransplantationTokai University School of MedicineKanagawaJapan
  3. 3.Department of PediatricsTokai University School of MedicineKanagawaJapan

Personalised recommendations