International Journal of Hematology

, Volume 75, Issue 1, pp 9–18 | Cite as

Molecular Genetics of Type 2 von Willebrand Disease

  • Edith Fressinaud
  • Claudine Mazurier
  • Dominique Meyer
Progress in Hematology


Type 2 von Willebrand disease (VWD) is characterized by a wide heterogeneity of functional and structural defects. These abnormalities cause either defective von Willebrand factor (VWF)-dependent platelet function in subtypes 2A, 2B, and 2M or defective VWF-factor VIII (FVIII) binding in subtype 2N. The diagnoses of types 2A, 2B, and 2M VWD may be guided by the observation of disproportionately low levels of ristocetin cofactor activity or collagen-binding capacity relative to VWF antigen. The abnormal platelet-dependent function is often associated with the absence of high molecular weight (HMW) multimers (type 2A, type 2B), but the HMW multimers may also be present (type 2M, some type 2B), and supranormal multimers may exist (“Vicenza” variant). The observation of a low FVIII-to-VWF:Ag ratio is a hallmark of type 2N VWD, in which the FVIII levels depend on the severity of the FVIII-binding defect. Today, the identification of mutations in particular domains of the pre-pro-VWF is helpful in classifying these variants and providing further insight into the structure-function relationship and the biosynthesis of VWF. Thus, mutations in the D2 domain, involved in the multi-merization process, are found in patients with type 2A, formerly named IIC VWD. Mutations located in the D’ domain or in the N terminus of the D3 domain define type 2N VWD. Mutations in the D3 domain characterize Vicenza and IIE patients. Mutations in the A1 domain may modify the binding of VWF multimers to platelets, either increasing (type 2B) or decreasing (type 2M, 2A/2M) the affinity of VWF for platelets. In type 2A VWD, molecular abnormalities identified in the A2 domain, which contains a specific proteolytic site, are associated with alterations in folding, impairing VWF secretion or increasing its susceptibility to proteolysis. Finally, a mutation localized in the carboxy-terminus CK domain, which is crucial for the dimerization of the VWF subunit, has been identified in a rare subtype 2A, formerly named IID.

Key words

von Willebrand disease Type 2 von Willebrand disease von Willebrand factor genetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sadler JE. A revised classification of von Willebrand disease.Thromb Haemost. 1994;71:520–525.PubMedGoogle Scholar
  2. 2.
    Ramsay DM, Buist TA, MacLeod DA, Heading RC. Persistent gastrointestinal bleeding due to angiodysplasia of the gut in von Wille- brand’s disease.Lancet. 1976;2:275–278.CrossRefPubMedGoogle Scholar
  3. 3.
    Fressinaud E, Meyer D. International survey of patients with von Willebrand disease and angiodysplasia.Thromb Haemost. 1993;70:546.PubMedGoogle Scholar
  4. 4.
    Kadir RA, Lee CA, Sabin CA, Pollard D, Economides DL. Pregnancy in women with von Willebrand’s disease or factor XI deficiency.Br J Obstet Gynaecol. 1998;105:314–321.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rick ME, Williams SB, Sacher RA, McKeown LP. Thrombocytope- nia associated with pregnancy in a patient with type IIB von Wille- brand’s disease.Blood. 1987;69:786–789.PubMedGoogle Scholar
  6. 6.
    Mazurier C, Gaucher C, Jorieux S, et al. Evidence for a von Wille- brand factor defect in factor VIII binding in three members of a family previously misdiagnosed mild haemophilia and haemophilia A carriers; consequences for therapy and genetic counselling.Br J Haematol. 1990;76:372–379.CrossRefPubMedGoogle Scholar
  7. 7.
    Fressinaud E, Veyradier A, Truchaud F, et al. Screening for von Willebrand disease with a new analyzer using high shear stress: a study of 60 cases.Blood. 1998;91:1325–1331.PubMedGoogle Scholar
  8. 8.
    Federici AB. Diagnosis of von Willebrand disease.Haemophilia. 1998;4:654–660.CrossRefPubMedGoogle Scholar
  9. 9.
    Veyradier A, Fressinaud E, Meyer D. Laboratory diagnosis of von Willebrand disease.Intern Clin Lab Res. 1998;28:201–210.CrossRefGoogle Scholar
  10. 10.
    Mazurier C, Meyer D. Factor VIII binding assay of von Willebrand Factor and the diagnosis of type 2N von Willebrand disease; results of an international survey. On behalf of the subcommittee on von Willebrand factor of the Scientific and Standardization Committee of the ISTH.Thromb Haemost. 1996;76:270–274.PubMedGoogle Scholar
  11. 11.
    Nishino M, Girma JP, Rothschild C, et al. New variant of von Wille- brand disease with defective binding to factor VIII.Blood. 1989;74:1591–1599.PubMedGoogle Scholar
  12. 12.
    Mazurier C, Goudemand J, Hilbert L, et al. Type 2N von Wille- brand disease: clinical manifestations, pathophysiology, laboratory diagnosis and molecular biology.Best Pract Res Clin Haematol. 2001;14:337–347.CrossRefPubMedGoogle Scholar
  13. 13.
    Fujimura Y, Titani K, Holland LZ, et al. von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet gly- coprotein Ib.J Biol Chem. 1986;261:381–385.PubMedGoogle Scholar
  14. 14.
    Sugimoto M, Mohri H, Mcclintock RA, Ruggeri ZM. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin—a model for the regulation of von Willebrand factor binding to platelet glycoprotein-Ib.J Biol Chem. 1991;266:18172–18178.PubMedGoogle Scholar
  15. 15.
    Roth GJ, Titani K, Hoyer LW, Hickey MJ. Localization of binding sites within human von Willebrand factor for monomeric type III collagen.Biochemistry. 1986;25:8357–8361.CrossRefPubMedGoogle Scholar
  16. 16.
    Kalafatis M, Takahashi Y, Girma JP, Meyer D. Localization of a collagen-interactive domain of human von Willebrand factor between amino acid residues Gly911 and Glu1365.Blood. 1987;70:1577–1583.PubMedGoogle Scholar
  17. 17.
    Beacham DA, Wise RJ, Turci SM, Handin RI. Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand Factor by site-directed mutagenesis.J Biol Chem. 1992;267:3409–3415.PubMedGoogle Scholar
  18. 18.
    Lankhof H, Wu YP, Vink T, et al. Role of the glycoprotein Ib-binding A1 repeat and the RGD sequence in platelet adhesion to human recombinant von Willebrand factor.Blood. 1995;86:1035–1042.PubMedGoogle Scholar
  19. 19.
    Foster PA, Fulcher CA, Marti T, et al. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor.J Biol Chem. 1987;262:8443–8447.PubMedGoogle Scholar
  20. 20.
    Takahashi Y, Kalafatis M, Girma JP, et al. Localization of a factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor.Blood. 1987;70:1979–1982.Google Scholar
  21. 21.
    Holmberg L, Karpman D, Isaksson C, Kristoffersson AC, Lethagen S, Schneppenheim R. Ins405AsnPro mutation in the von Willebrand factor propeptide in recessive type 2A (IIC) von Willebrand’s disease.Thromb Haemost. 1998;79:718–722.CrossRefPubMedGoogle Scholar
  22. 22.
    Gaucher C, Mazurier C. Phenotype IIC von Willebrand disease: the expression of three mutant recombinant von Willebrand factors (VWF) confirms the importance of the D2 domain of VWF propeptide in the multimer assembly process.Br J Haematol. 1996;93(suppl 2):15. Abstract 58.Google Scholar
  23. 23.
    Gaucher C, Uno H, Yamazaki T, Mashiba H, Mazurier C. A new candidate mutation (N528S) within the von Willebrand factor propeptide identified in a Japanese patient with phenotype IIC of von Willebrand disease.Eur J Haematol. 1998;61:145–148.CrossRefPubMedGoogle Scholar
  24. 24.
    Schneppenheim R, Thomas KB, Krey S, et al. Identification of a candidate missense mutation in a family of von Willebrand disease type IIC.Hum Genet. 1995;95:681–686.CrossRefPubMedGoogle Scholar
  25. 25.
    Gaucher C, Dieval J, Mazurier C. Characterization of von Willebrand factor gene defects in two unrelated patients with type IIC von Willebrand disease.Blood. 1994;84:1024–1030.PubMedGoogle Scholar
  26. 26.
    Verweij CL, Hart M, Pannekoek H. Expression of variant von Willebrand factor (VWF) cDNA in heterologous cells: requirement of the pro-polypeptide in VWF multimer formation.EMBO J. 1987;6:2885–2890.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wise RJ, Pittman DD, Handin RI, Kaufman RJ, Orkin SH. The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers.Cell. 1988;52:229–236.CrossRefPubMedGoogle Scholar
  28. 28.
    Mayadas TN, Wagner D. In vitro multimerization of von Willebrand factor is triggered by low pH.J Biol Chem. 1989;264:23, 13497–13503.Google Scholar
  29. 29.
    Mayadas TN, Wagner DD. Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly.Proc Natl Acad Sci U S A. 1992;89:3331–3335.CrossRefGoogle Scholar
  30. 30.
    Mazurier C, Dieval J, Jorieux S, et al. A new von Willebrand factor defect in a patient with factor VIII deficiency but with normal levels and multimeric patterns of both plasma and platelet VWF. Characterization of abnormal VWF/FVIII interaction.Blood. 1990;75:20–26.PubMedGoogle Scholar
  31. 31.
    Gaucher C, Jorieux S, Mercier B, et al. The Normandy variant of von Willebrand disease; characterization of a point mutation in the von Willebrand factor gene.Blood. 1991;77:1937–1941.PubMedGoogle Scholar
  32. 32.
    Jorieux S, Gaucher C, Goudemand J, et al. A novel mutation in the D3 domain of von Willebrand factor markedly decreases its ability to bind factor VIII and affects its multimerization.Blood. 1998;92:4663–4670.PubMedGoogle Scholar
  33. 33.
    Allen S, Abuzenadah AM, Blagg JL, et al. Two novel type 2N von Willebrand disease-causing mutations that result in defective factor VIII binding, multimerization, and secretion of von Willebrand factor.Blood. 2000;95:2000–2007.PubMedGoogle Scholar
  34. 34.
    Jorieux S, Fressinaud E, Goudemand J, et al. Conformational changes in the D’ domain of von Willebrand factor induced by Cys 25 and Cys 95 mutations lead to factor VIII binding defect and multimeric impairment.Blood. 2000;95:3139–3145.PubMedGoogle Scholar
  35. 35.
    Schneppenheim R, Federici AB, Budde U, et al. von Willebrand disease type 2M “Vicenza” in Italian and German patients: identification of the first candidate mutation (G3864A; R1205H) in 8 families.Thromb Haemost. 2000;82:136–140.Google Scholar
  36. 36.
    Mannucci PM, Lombardi R, Castaman G, et al. von Willebrand dis- ease “Vicenza” with larger-than-normal (supranormal) von Wille- brand factor multimers.Blood. 1988;71:65–70.PubMedGoogle Scholar
  37. 37.
    Zieger B, Budde U, Jessat U, et al. New families with von Wille- brand disease type 2M (Vicenza).Thromb Res. 1997;87:57–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Svirin PV, Nichols WL, Daniels TM. “Vicenza” variant von Wille- brand disease (ultralarge VWF multimers): laboratory features and prevalence [abstract].Haemostasis. 2000;30:82.Google Scholar
  39. 39.
    Schneppenheim R, Budde U, Drewke E, et al. Cysteine mutations of von Willebrand factor correlate with different types of von Willebrand disease [abstract].Thromb Haemost. 1999;82:283.CrossRefGoogle Scholar
  40. 40.
    Meyer D, Fressinaud E, Gaucher C, et al. Gene defects in 150 unrelated French cases with type 2 von Willebrand disease: from the patient to the gene.Thromb Haemost. 1997;78:451–456.PubMedCrossRefGoogle Scholar
  41. 41.
    Nichols WC, Ginsburg D. von Willebrand disease.Medicine. 1997;76:1–20.CrossRefPubMedGoogle Scholar
  42. 42.
    Holmberg L, Dent JA, Schneppenheim R, Budde U, Ware J, Ruggeri ZM. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure.J Clin Invest. 1993;91:2169–2177.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rabinowitz I, Randi AM, Shindler KS, Tuley EA, Rustagi PK, Sadler JE. Type-IIB mutation His-505→Asp implicates a new segment in the control of von Willebrand factor binding to platelet glycoprotein-Ib.J Biol Chem. 1993;268:20497–20501.PubMedGoogle Scholar
  44. 44.
    Siguret V, Ribba AS, Christophe O, et al. Characterization of recombinant von Willebrand factors mutated on cysteine 509 or 695.Thromb Haemost. 1996;76:453–459.PubMedCrossRefGoogle Scholar
  45. 45.
    Lavergne JM, Depaillette L, Bahnak BR, et al. Defects in type-IIA von Willebrand disease—a Cysteine-509 to Arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein-Ib-IX.Br J Haematol. 1992;82:66–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Ribba AS, Lavergne JM, Bahnak BR, Derlon A, Pietu G, Meyer D. Duplication of a methionine within the glycoprotein Ib binding domain of von Willebrand Factor detected by denaturing gradient gel electrophoresis in a patient with type-IIB von Willebrand Disease.Blood. 1991;78:1738–1743.PubMedGoogle Scholar
  47. 47.
    Hilbert L, Gaucher C, Abgrall JF, Parquet A, Trzeciak C, Mazurier C. Identification of new type 2B von Willebrand disease mutations: Arg543Gln, Arg545Pro and Arg578Leu.Br J Haematol. 1998;103:877–884.CrossRefPubMedGoogle Scholar
  48. 48.
    Facey DA, Favaloro EJ, Koutts J, Berndt MC, Hertzberg MS. Identification and characterization of a novel mutation in von Wille- brand factor causing type 2B von Willebrand’s disease.Br J Haematol. 1999;105:538–541.CrossRefPubMedGoogle Scholar
  49. 49.
    Randi AM, Rabinowitz I, Mancuso DJ, Mannucci PM, Sadler JE. Molecular basis of von Willebrand disease type-IIB—candidate mutations cluster in one disulfide loop between proposed platelet glycoprotein-Ib binding sequences.J Clin Invest. 1991;87:1220–1226.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Donner M, Andersson AM, Kristoffersson AC, Nilsson IM, Dahlback B, Holmberg L. An Arg545→Cys545 substitution mutation of the von Willebrand Factor in type-IIB von Willebrand’s disease.Eur J Haematol. 1991;47:342–345.CrossRefPubMedGoogle Scholar
  51. 51.
    Federici AB, Mannucci PM, Stabile F, et al. A type 2B von Wille- brand disease mutation (Ile(546)→Val) associated with an unusual phenotype.Thromb Haemost. 1997;78:1132–1137.PubMedCrossRefGoogle Scholar
  52. 52.
    Wood N, Standen GR, Murray EW, et al. Rapid genotype analysis in type 2B von Willebrand’s disease using a universal heteroduplex generator.Br J Haematol. 1995;89:152–156.CrossRefPubMedGoogle Scholar
  53. 53.
    Ware J, Dent JA, Azuma H, et al. Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand Factor affinity for the platelet membrane glycoprotein Ib-IX receptor.Proc Natl Acad Sci U S A. 1991;88:2946–2950.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ribba AS, Christophe O, Derlon A, et al. Discrepancy between IIA-phenotype and IIB-genotype in a patient with a variant of von Willebrand disease.Blood. 1994;83:833–841.PubMedGoogle Scholar
  55. 55.
    Cooney KA, Ginsburg D. Comparative analysis of type 2B von Willebrand disease mutations: implications for the mechanism of von Willebrand factor binding to platelets.Blood. 1996;87:2322–2328.PubMedGoogle Scholar
  56. 56.
    Cooney KA, Nichols WC, Bruck ME, et al. The molecular defect in type-IIB von Willebrand disease—identification of four potential missense mutations within the putative GpIb binding domain.J Clin Invest. 1991;87:1227–1233.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kroner PA, Kluessendorf ML, Scott JP, Montgomery RR. Expressed full-length von Willebrand Factor containing missense mutations linked to type-IIB von Willebrand disease shows enhanced binding to platelets.Blood. 1992;79:2048–2055.PubMedGoogle Scholar
  58. 58.
    Randi AM, Jorieux S, Tuley EA, Mazurier C, Sadler JE. Recombinant von Willebrand Factor Arg578→Gln—a type-IIB von Wille- brand disease mutation affects binding to glycoprotein-Ib but not to collagen or heparin.J Biol Chem. 1992;267:21187–21192.PubMedGoogle Scholar
  59. 59.
    Casana P, Martinez F, Espinos C, Haya S, Lorenzo JI, Aznar JA. Search for mutations in a segment of the exon 28 of the human von Willebrand factor gene: new mutations, R1315C and R1341W, associated with type 2M and 2B variants.Am J Hematol. 1998;59:57–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Hilbert L, Gaucher C, De Romeuf C, Horellou MH, Vink T, Mazurier C. Leu 697→Val mutation in mature von Willebrand factor is responsible for type IIB von Willebrand disease.Blood. 1994;83:1542–1550.PubMedGoogle Scholar
  61. 61.
    Hilbert L, Gaucher C, Mazurier C. Effects of different amino-acid substitutions in the leucine 694-proline 708 segment of recombinant von Willebrand factor.Br J Haematol. 1995;91:983–990.CrossRefPubMedGoogle Scholar
  62. 62.
    Holmberg L, Berntorp E, Donner M, Nilsson IM. von Willebrand’s disease characterized by increased ristocetin sensitivity and the presence of all von Willebrand factor multimers in plasma.Blood. 1986;68:668–672.PubMedGoogle Scholar
  63. 63.
    Weiss HJ, Sussman I. A new von Willebrand variant (type I, New York): increased ristocetin-induced platelet aggregation and plasma von Willebrand factor containing the full range of multi- mers.Blood. 1986;68:149–156.PubMedGoogle Scholar
  64. 64.
    Gaucher C, De Romeuf C, Ranismorret M, Corazza F, Fondu P, Mazurier C. Diagnosis of subtype 2B von Willebrand disease in a patient with 2A phenotype of plasma von Willebrand factor.Thromb Haemost. 1995;73:610–616.PubMedCrossRefGoogle Scholar
  65. 65.
    Rabinowitz I, Tuley EA, Mancuso DJ, et al. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin- induced von Willebrand factor binding to platelet glycoprotein Ib.Proc Natl Acad Sci U S A. 1992;89:9846–9849.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hillery CA, Mancuso DJ, Sadler JE, et al. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin—but not botrocetin—medi- ated binding of von Willebrand factor to platelet.Blood. 1998;91:1572–1581.PubMedGoogle Scholar
  67. 67.
    Mancuso DJ, Kroner PA, Christopherson PA, Vokac EA, Gill JC, Montgomery RR. Type 2M Milwaukee - 1 von Willebrand disease: an in-frame deletion in the Cys509-Cys695 loop of von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets.Blood. 1996;88:2559–2568.PubMedGoogle Scholar
  68. 68.
    Hilbert L, Jenkins PV, Gaucher C, et al. Type 2M vWD resulting from a lysine deletion within a four lysine residue repeat in the A1 loop of von Willebrand factor.Thromb Haemost. 2000;84:188–194.CrossRefPubMedGoogle Scholar
  69. 69.
    Ajzenberg N, Ribba AS, Rastegar-Lari G, Meyer D, Baruch D. Effect of recombinant von Willebrand factor reproducing type 2B or type 2M mutations on shear-induced platelet aggregation.Blood. 2000;95:3796–3803.PubMedGoogle Scholar
  70. 70.
    Ribba AS, Hilbert L, Lavergne JM, et al. The Arg552Cys (R1315C) mutation within the A1 loop of von Willebrand factor (VWF) induces an abnormal folding with a loss-of-function resulting in 2A-like phenotype of von Willebrand disease. Study of ten patients and of mutated recombinant VWF.Blood. 2001;97:952–959.CrossRefPubMedGoogle Scholar
  71. 71.
    Hilbert L, Gaucher C, Mazurier C. Identification of two mutations (Arg611Cys and Arg611His) in the A1 loop of von Willebrand factor (vWF) responsible for type 2 von Willebrand disease with decreased platelet-dependent function of vWF.Blood. 1995;86:1010–1018.PubMedGoogle Scholar
  72. 72.
    Lyons SE, Bruck ME, Bowie EJW, Ginsburg D. Impaired intracel- lular transport produced by a subset of type-IIA von Willebrand disease mutations.J Biol Chem. 1992;267:4424–4430.PubMedGoogle Scholar
  73. 73.
    Gaucher C, Hanss M, Dechavanne M, Mazurier C. Substitution of cysteine for phenylalanine-751 in mature von Willebrand factor is a novel candidate mutation in a family with type-IIA von Wille- brand disease.Br J Haematol. 1993;83:94–99.CrossRefPubMedGoogle Scholar
  74. 74.
    Enayat MS, Theophilus BD, Hill FGH, et al. A new (K1518E) candidate mutation detected by universal heteroduplex generator analysis in a patient with type 2A (phenotype IIA) von Willebrand disease.Thromb Haemost. 1998;79:240.CrossRefPubMedGoogle Scholar
  75. 75.
    Lyons SE, Cooney KA, Bockenstedt P, Ginsburg D. Characterization of Leu777Pro and Ile865Thr type IIA von Willebrand disease mutations.Blood. 1994;83:1551–1557.PubMedGoogle Scholar
  76. 76.
    Sugiura I, Matsushita T, Tanimoto M, et al. 3 distinct candidate point mutations of the von Willebrand factor gene in 4 patients with type-IIA von Willebrand disease.Thromb Haemost. 1992;67:612–617.PubMedCrossRefGoogle Scholar
  77. 77.
    Donner M, Kristoffersson AC, Berntorp E, et al. Two new candidate mutations in type IIA von Willebrand’s disease (Arg834→Gly, Gly846→Arg) and one polymorphism (Tyr821→Cys) in the A2 region of the von Willebrand factor.Eur J Haematol. 1993;51:38.CrossRefPubMedGoogle Scholar
  78. 78.
    Inbal A, Englender T, Kornbrot N, et al. Identification of 3 candidate mutations causing type-IIA von Willebrand disease using a rapid, nonradioactive, allele-specific hybridization method.Blood. 1993;82:830–836.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Inbal A, Seligsohn U, Kornbrot N, et al. Characterization of 3 mutations causing von Willebrand disease type-IIA in 5 unrelated families.Thromb Haemost. 1992;67:618–622.CrossRefGoogle Scholar
  80. 80.
    Bernardi F, Casonato A, Marchetti G, et al. Two novel mutations (Pro864His, Val867Glu) causing type 2A von Willebrand disease and affecting a single restriction site in exon 28.Br J Haematol. 1998;103:885–887.CrossRefPubMedGoogle Scholar
  81. 81.
    Iannuzzi MC, Hidaka N, Boehnke M, et al. Analysis of the relationship of von Willebrand disease (vWD) and hereditary hemor- rhagic telangiectasia and identification of a potential type-IIA vWD mutation (IIe865 to Thr).Am J Hum Genet. 1991;48:757–763.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Casana P, Martinez F, Haya S, Aznar JA. Identification of a new candidate mutation, G1629R, in a family with type 2A von Wille- brand disease.Am J Haematol. 1999;60:309–310.CrossRefGoogle Scholar
  83. 83.
    Ribba AS, Voorberg J, Meyer D, Pannekoek H, Pietu G. Characterization of recombinant von Willebrand Factor corresponding to mutations in type-IIA and type-IIB von Willebrand disease.J Biol Chem. 1992;267:23209–23215.PubMedGoogle Scholar
  84. 84.
    Pietu G, Ribba AS, Depaillette L, et al. Molecular study of von Willebrand disease—identification of potential mutations in patients with type-IIA and type-IIB.Blood Coag Fibrinolysis. 1992;3:415–421.CrossRefGoogle Scholar
  85. 85.
    Enayat MS, Guilliatt AM, Surdhar GK, Theophilus BD, Hill FG. A new candidate missense mutation (Leu1657Ile) in an apparent asymptomatic type 2A (phenotype IIA) von Willebrand disease family.Thromb Haemost. 2000;84, 369–373.CrossRefPubMedGoogle Scholar
  86. 86.
    Hagiwara T, Inaba H, Yoshida S, et al. A novel mutation Gly1672→Arg in type 2A and a homozygous mutation in type 2B von Willebrand disease.Thromb Haemost. 1996;76:253–257.PubMedCrossRefGoogle Scholar
  87. 87.
    Weiss HJ, Pietu G, Rabinowitz R, Girma JP, Rogers J, Meyer D. Heterogeneous abnormalities in the multimeric structure, anti- genic properties, and plasma-platelet content of factor VIII/von Willebrand factor in subtypes of classic (type I) and variant (type IIA) von Willebrand’s disease.J Lab Clin Med. 1983;101:411–425.PubMedGoogle Scholar
  88. 88.
    Dent JA, Galbusera M, Ruggeri ZM. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit.J Clin Invest. 1991;88:774–782.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.Blood. 1996;87:4223–4234.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tsai HM. Physiological cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion.Blood. 1996;87:4235–4244.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Englender TE, Lattuada A, Mannucci PM, Sadler JE, Inbal A. Analysis of Arg834Gln and Val902Glu type 2A von Willebrand disease mutations. Studies with recombinant von Willebrand factor and correlation with patient characteristics.Blood. 1996;87:2788–2794.PubMedGoogle Scholar
  92. 92.
    Ribba AS, Loisel I, Lavergne JM, et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (VWF) in two related patients leads to a defective binding of VWF to collagen.Thromb Haemost. 2001;86:848–854.CrossRefPubMedGoogle Scholar
  93. 93.
    Katsumi A, Tuley E, Bodo I, Sadler JE. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor.J Biol Chem. 2000;275:25585–25594.CrossRefPubMedGoogle Scholar
  94. 94.
    Kinoshita S, Harrison J, Lazerson J, Abildgaard CF. A new variant of dominant type II von Willebrand’s disease with aberrant multi- meric pattern of factor VIII-related antigen (type IID).Blood. 1984;63:1369–1371.PubMedGoogle Scholar
  95. 95.
    Schneppenheim R, Brassard J, Krey S, et al. Defective dimerization of von Willebrand factor subunits due to a Cys to Arg mutation in type IID von Willebrand disease.Proc Natl Acad Sci U S A. 1996;93:3581–3586.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Edith Fressinaud
    • 1
  • Claudine Mazurier
    • 2
  • Dominique Meyer
    • 1
  1. 1.INSERM U.143, Le Kremlin-BicětreLilleFrance
  2. 2.LFBLilleFrance

Personalised recommendations