Skip to main content

Molecular and Cellular Biology of von Willebrand Factor

Abstract

von Willebrand factor (VWF) is a plasma protein that performs 2 main functions in hemostasis: it mediates platelet adhesion to the injured vessel wall, and it carries and protects coagulation factor VIII. VWF is synthesized through a multistep process in endothelial cells and megakaryocytes as a very large polymer composed of identical disulfide-linked 250-kd sub-units. In endothelial cells,VWF not only directs the formation of its own storage granules, the Weibel-Palade bodies, but it also acts as a chaperone molecule to direct other proteins, such as P-selectin, into these granules. Upon stimulation of the endothe-lium, the Weibel-Palade bodies will be translocated to the plasma membrane, and their contents will be secreted into the plasma milieu. The expression of VWF can be regulated at different levels by a number of genetic and environmental factors, resulting in control of its activity. New roles for VWF, especially in inflammatory processes, have recently been suggested, indicating that some aspects of this well-studied protein remain to be investigated.

This is a preview of subscription content, access via your institution.

References

  1. Ruggeri ZM. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation.Best Pract Res Clin Haematol. 2001;14:257–279.

    Article  CAS  PubMed  Google Scholar 

  2. Sadler JE. Biochemistry and genetics of von Willebrand factor.Annu Rev Biochem. 1998;67:395–424.

    Article  CAS  PubMed  Google Scholar 

  3. Matsushita T, Meyer D, Sadler JE. Localization of von willebrand factor-binding sites for platelet glycoprotein Ib and botrocetin by charged-to-alanine scanning mutagenesis.J Biol Chem. 2000;275:11044–11049.

    Article  CAS  PubMed  Google Scholar 

  4. Romijn RA, Bouma B, Wuyster W, et al. Identification of the collagen-binding site of the von Willebrand factor A3-domain.J Biol Chem. 2001;276:9985–9991.

    Article  CAS  PubMed  Google Scholar 

  5. Koivunen E, Ranta TM, Annila A, et al. Inhibition of beta(2) inte-grin-mediated leukocyte cell adhesion by leucine-leucine-glycine motif-containing peptides.J Cell Biol. 2001;153:905–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wagner DD. Cell biology of von Willebrand factor.Annu Rev Cell Biol. 1990;6:217–246.

    Article  CAS  PubMed  Google Scholar 

  7. Voorberg J, Fontijn R, Calafat J, Jansenn H, van Mourik JA, Pannekoek H. Assembly and routing of von Willebrand factor variants: the requirements for disulphide-linked dimerization reside within the carboxy-terminal 151 amino acids.J Cell Biol. 1991;113:195–205.

    Article  CAS  PubMed  Google Scholar 

  8. Voorberg J, Fontijn R, van Mourik JA, Pannekoek H. Domains involved in multimer assembly of von Willebrand factor (vWF): multimerization is independent of dimerization.EMBO J. 1990;9:797–803.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  9. Mayadas TN, Wagner DD. Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly.Proc Natl Acad Sci U S A. 1992;89:3531–3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner DD. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin.Thromb Haemost. 1993;70:105–110.

    PubMed  CAS  Article  Google Scholar 

  11. Wagner DD, Saffaripour S, Bonfanti R, et al. Induction of specific storage organelles by von Willebrand factor propolypeptide.Cell. 1991;64:403–413.

    Article  CAS  PubMed  Google Scholar 

  12. Voorberg J, Fontijn R, Calafat J, Jansenn H, van Mourik JA, Pannekoek H. Biogenesis of von Willebrand factor-containing organelles in heterologous transfected CV-1 cells.EMBO J. 1993;12:749–758.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  13. Haberichter SL, Fahs SA, Montgomery RR. Von Willebrand factor storage and multimerization: 2 independent intracellular processes.Blood. 2000;96:1808–1815.

    PubMed  CAS  Google Scholar 

  14. Haberichter SL, Montgomery RR.Identification of amino acids in the von Willebrand factor (VWF) propeptide critical for storage of VWF. XVIIIth Congress of the International Society of Thrombosis and Haemostasis; 2001; Paris. Abstract OC889.

  15. Haberichter SL, Jacobi PM, Jozwiak MA, Montgomery RR.Von Willebrand factor (VWF) storage is dependent upon an essential association site located in the D3 domain of VWF. XVIIIth Con- gress of the International Society of Thrombosis and Haemostasis; 2001; Paris. Abstract OC84.

  16. Russel FD, Skepper JN, Davenport AP Evidence using immuno- electron microscopy for regulated and constitutive pathways in the transport and release of endothelin.J Cardiovasc Pharmacol. 1998;31:1184–1191.

    Google Scholar 

  17. Utgaard JO, Jahnsen FL, Bakka A, Brandtzaeg P, Haraldsen G. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells.J Exp Med. 1998;188:1751–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolff B, Burns AR, Middleton J, Rot A. Endothelial cell “memory” of inflammatory stimulation: human venular endothelial cells store interleukin 8 in Weibel-Palade bodies.J Exp Med. 1998;188:1757–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schnyder-Candrian S, Borsig L, Moser R, Berger EG. Localization of α 1,3-fucosyltransferase VI in Weibel-Palade bodies of human endothelial cells.Proc Natl Acad Sci U S A. 2000;97:8369–8374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosnoblet C, Visher UM, Gerard RD, Irminger J-C, Halban PA, Kruithof EKO. Storage of tissue-type plasminogen activator in Weibel-Palade bodies of human endothelial cells.Arterioscler Thromb Vasc Biol. 1999;19:1796–1803.

    Article  CAS  PubMed  Google Scholar 

  21. Visher UM, Jornot L, Wollheim CB, Theler JM. Reactive oxygen intermediates induce regulated secretion of von Willebrand factor from cultured human vascular endothelial cells.Blood. 1995;85:3164–3172.

    Google Scholar 

  22. Visher UM, Wollheim CB. Epinephrine induces von Willebrand factor release from cultured endothelial cells: involvement of cyclic AMP-dependent signalling in exocytosis.Thromb Haemost. 1997;77:1182–1188.

    Article  Google Scholar 

  23. Palmer DS, Aye MT, Ganz PR, Halpenny M, Hashemi S. Adenosine nucleotides and serotonin stimulate von Willebrand factor from endothelial cells.Thromb Haemost. 1994;72:132–139.

    PubMed  CAS  Article  Google Scholar 

  24. Datta YH, Romano M, Jacobson BC, Golan DE, Serhan CN, Ewenstein BM. Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells.Circulation. 1995;92:3304–3311.

    Article  CAS  PubMed  Google Scholar 

  25. Pinsky DJ, Naka Y, Liao H, et al. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation.J Clin Invest. 1996;97:493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mannucci PM. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years.Blood. 1997;90:2515–2521.

    PubMed  CAS  Google Scholar 

  27. Kaufmann JE, Oksche A, Wollheim CB, Günther G, Rosenthal W, Visher UM. Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP.J Clin Invest. 2000;106:107–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vischer UM, Barth H, Wollheim CB. Regulated von Willebrand factor secretion is associated with agonist-specific patterns of cytoskeletal remodeling in cultured endothelial cells.Arterioscler Thromb Vasc Biol. 2000;20:883–891.

    Article  CAS  PubMed  Google Scholar 

  29. de Leeuw HP, Fernandez-Borja M, Reits EA, et al. Small GTP- binding protein Ral modulates regulated exocytosis of von Willebrand factor by endothelial cells.Arterioscler Thromb Vasc Biol. 2001;21:899–904.

    Article  CAS  PubMed  Google Scholar 

  30. Koedam JA, Cramer EM, Briend E, Furie B, Furie BC, Wagner DD. P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells.J Cell Biol. 1992;116:617–625.

    Article  CAS  PubMed  Google Scholar 

  31. Hop C, Guilliatt A, Daly M, et al. Assembly of multimeric von Willebrand factor directs sorting of P-selectin.Arterioscler Thromb Vasc Biol. 2000;20:1763–1768.

    Article  CAS  PubMed  Google Scholar 

  32. Denis CV, Andre P, Saffaripour S, Wagner DD Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice.Proc Natl Acad Sci U S A. 2001;98:4072–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenberg JB, Foster PA, Kaufman RJ, et al. Intracellular trafficking of factor VIII to von Willebrand factor storage granules.J Clin Invest. 1998;101:613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenberg JB, Greengard JS, Montgomery RR. Genetic induction of a releasable pool of factor VIII in human endothelial cells.Arterioscler Thromb Vasc Biol. 2000;20:2689–2695.

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira V, Assouline Z, Schwachtgen JL, Bahnak BR, Meyer D, Kerbiriou-Nabias D. The role of the 5’-flanking region in the cell- specific transcription of the human von Willebrand factor gene.Biochem J. 1993;293:641–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jahroudi N, Ardekani AM, Greenberger JS. An NF1-like protein functions as a repressor of the von Willebrand factor promoter.J Biol Chem. 1996;271:21413–1421.

    Article  CAS  PubMed  Google Scholar 

  37. Ardekani AM, Greenberger JS, Jahroudi N. Two repressor elements inhibit expression of the von Willebrand factor gene promoter in vitro.Thromb Haemost. 1998;80:488–494.

    Article  CAS  PubMed  Google Scholar 

  38. Levy G, Ginsburg D. Getting at the variable expressivity of von Willebrand disease.Thromb Haemost. 2001;86:144–148.

    Article  CAS  PubMed  Google Scholar 

  39. Keightley AM, Lam YM, Brady JN, Cameron CL, Lillicrap D. Variation at the von Willebrand factor (vWF) gene locus is associated with plasma vWFAg levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter.Blood. 1999;93:4277–4283.

    PubMed  CAS  Google Scholar 

  40. Harvey PJ, Keightley AM, Lam YM, Cameron C, Lillicrap D. A single nucleotide polymorphism at nucleotide -1793 in the von Willebrand factor (VWF) regulatory region is associated with plasma VWF:Ag levels.Br J Haematol. 2000;109:349–353.

    Article  CAS  PubMed  Google Scholar 

  41. Costa M, Grant PJ, Rice GI, Futers TS, Medcalf RL. Human endothelial cell-derived nuclear proteins that recognise polymor- phic DNA elements in the von Willebrand factor gene promoter include YY1.Thromb Haemost. 2001;86:672–679.

    Article  CAS  PubMed  Google Scholar 

  42. Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ Jr, Montgomery RR. The effect of ABO blood group on the diagnosis of von Wille- brand disease.Blood. 1987;69:1691–1695.

    PubMed  CAS  Google Scholar 

  43. Mohlke KL, Purkayastha AA, Westrick RJ, et al. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase.Cell. 1999;96:111–120.

    Article  CAS  PubMed  Google Scholar 

  44. Denis CV, Kwack K, Saffaripour S, et al. Interleukin 11 significantly increases plasma von Willebrand factor and factor VIII in wild type and von Willebrand disease mouse models.Blood. 2001;97:465–472.

    Article  CAS  PubMed  Google Scholar 

  45. Mannucci PM. von Willebrand factor: a marker of endothelial damage?Arterioscler Thromb Vasc Biol. 1998;18:1359–1362.

    Article  CAS  PubMed  Google Scholar 

  46. van Mourik JA, Romani de Wit T. Von Willebrand factor propep- tide in vascular disorders.Thromb Haemost. 2001;86:164–171.

    Article  CAS  PubMed  Google Scholar 

  47. Xie L, Chesterman CN, Hogg PJ. Reduction of von Willebrand factor by endothelial cells.Thromb Haemost. 2000;84:506–513.

    Article  CAS  PubMed  Google Scholar 

  48. Xie L, Chesterman CN, Hogg PJ. Control of von Willebrand factor multimer size by thrombospondin-1.J Exp Med. 2001;193:1341–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family.Blood. 2001;98:1662–1666.

    Article  CAS  PubMed  Google Scholar 

  50. Gerritsen HE, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease.Blood. 2001;98:1654–1661.

    Article  CAS  PubMed  Google Scholar 

  51. Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic throm- bocytopenic purpura.J Biol Chem. 2001;276:41059–41063.

    Article  CAS  PubMed  Google Scholar 

  52. Jager A, van Hinsbergh VW, Kostense PJ, et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondi- abetic subjects: the Hoorn Study.Arterioscler Thromb Vasc Biol. 1999;19:3071–3078.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Denis, C.V. Molecular and Cellular Biology of von Willebrand Factor. Int J Hematol 75, 3–8 (2002). https://doi.org/10.1007/BF02981972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981972

Key words

  • von Willebrand factor
  • Hemostasis
  • Weibel-Palade bodies
  • Vascular endothelium
  • Chaperone protein