Abstract
Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, PI3 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis.The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.
Similar content being viewed by others
References
Japanese Ministry of Health and Welfare. http://www.mhw.go.jp.
SEER Cancer Statistics Review 1973–1997, National Cancer Institute. http://www.seer.ims.nci.nih.gov.
Kantarjian HM, Talpaz M, O’Brien S, et al. Chronic myelogenous leukemia—progress at the M. D.Anderson Cancer Center over the past two decades and future directions: first Emil J Freireich Award Lecture.Clin Cancer Res. 1997;3:2723–2733.
Nowell PV, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia.Science. 1960;132:1497.
Barr RD, Fialkow PJ. Clonal origin of chronic myelocytic leukemia.N Engl J Med. 1973;289:307–309.
Moore S, Haylock DN, Levesque JP, et al. Stem cell factor as a single agent induces selective proliferation of the Philadelphia chromosome positive fraction of chronic myeloid leukemia CD34(+) cells.Blood. 1998;92:2461–2470.
Heyssel R, Brill AB, Woodbury L, et al. Leukemia in Hiroshima atomic bomb survivors.Blood. 1960;15:313–331.
Deininger MWN,Bose S,Gora-Tybor J,Yan X, Goldman JM, Melo JV. Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation.Cancer Res. 1998;5:421–425.
Kozubek S, Lukasova E, Ryznar L, et al. Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes.Blood. 1997;89:4537–4545.
Jacobs A. Benzene and leukemia.Br J Haematol. 1989;72:119–121.
Sawyers CL. Chronic myeloid leukemia.N Engl J Med. 1999;340:1330–1340.
Dunham I, Shimizu N, Roe BA, et al. The DNA sequence of human chromosome 22.Nature. 1999;402:489–495.
Jeffs AR, Benjes SM, Smith TL, Sowerby SJ, Morris CM. The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukemia.Hum Mol Genet 1998;7:767–776.
Chissoe SL, Bodenteich A, Wang Y, et al. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation.Genomics. 1995;27:67–82.
Hermans A, Heisterkamp N, Lindern M, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphocytic leukemia.Cell. 1987;51:33–40.
Groffen J, Stephenson JR, Heisterkamp N, Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22.Cell. 1984;36:93–99.
Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myelogenous leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction).Blood. 1996;88:2410–2414.
Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype.Blood. 1996;88:2375–2384.
Melo JV, Gordon DE, Cross NCP, Goldman JM. The ABL-BCR fusion gene is expressed in chronic myeloid leukemia.Blood. 1993;81:158–165.
Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia.Blood. 2000;95:738–743.
Ravandi F, Cortes J, Albitar M, et al. Chronic myelogenous leukaemia with p185(BCR/ABL) expression: characteristics and clinical significance.Br J Haematol. 1999;107:581–586.
Sandberg AA, Kohno S, Wake N, Minowada J. Chromosomes and causation of human cancer and leukemia Ph1-positive ALL: an entity within myeloproliferative disorders?Cancer Genet Cytogenet. 1980;2:145–174.
Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NCP. p190BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias.Blood. 1996;87:5213–5217.
Briz M, Vilches C, Cabrera R, Fores R, Fernandez MN. Typical chronic myelogenous leukemia with e19a2 junction BCR/ABL transcript.Blood. 1997;90:5024–5025.
How GF, Tan LT, Lim LC. Chronic myeloid leukemia with e19a2 (c3a2) BCR/ABL fusion junction: is it truly a benign disease?Leukemia. 1998;12:1166–1167.
Hochhaus A, Reiter A, Skladny H, et al. A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia.Blood. 1996;88:2236–2240.
How GF, Lim LC, Kulkarni S,Tan LT,Tan P, Cross NC. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons.Br J Haematol. 1999;105:434–436.
Melo JV, Yan X, Diamond J, Goldman JM. Lack of imprinting of the ABL gene.Nat Genet. 1994;8:318–319.
Abelson HT, Rabstein LS. Lymphosarcome: virus-induced thymicindependent disease in mice.Cancer Res. 1970;30:2213–2222.
Rosenberg N, Baltimore D. Abelson virus. In: Klein G, ed.Viral Oncoloy. New York, NY: Raven Press; 1980:187–203.
Lewis JM, Baskaran R,Taagepera S, Schwartz MA, Wang JYJ. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmicnuclear transport.Proc Natl Acad Sci U S A. 1996;93:15174–15179.
Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene.Cell. 1986;47:277–284.
Ben-Neriah Y, Bernards A, Paskind M, Daley GQ, Baltimore D. Alternative 5′ exons in c-abl mRNA.Cell. 1986;44:577–586.
Meijer D, Hermans A, von Lindern M, et al. Molecular characterization of the testis specific c-abl mRNA in mouse.EMBO J. 1987;6:4041–4048.
Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization.Cell. 1989;58:669–678.
Birchenall-Roberts MC, Ruscetti FW, Kasper JJ, et al. Nuclear localization of v-Abl leads to complex formation with cyclic AMP response element (CRE)-binding protein and transactivation through CRE motifs.Mol Cell Biol. 1995;15:6088–6099.
Goga A, Liu X, Hambuch TM, et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase.Oncogene. 1995;11:791–799.
Jackson P, Baltimore D. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl.EMBO J. 1989;8:449–456.
Wetzler M,Talpaz M, van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation.J Clin Invest. 1993;92:1925–1939.
Hardin JD, Boast S, Mendelsohn M, Santos K, Goff SP. Transgenes encoding both type I and type IV c-abl proteins rescue the lethality of c-abl mutant mice.Oncogene. 1996;12:2669–2677.
Pisabarro MT, Serrano L. Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain.Biochemistry. 1996;35:10634–10640.
Dikstein R, Heffetz D, Ben-Neriah Y, Shaul Y. c-abl has a sequence-specific enhancer binding activity.Cell. 1992;69:751–757.
Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity.J Cell Biol. 1994;124:325–340.
Kruh GD, Perego R, Miki T, Aaronson SA. The complete coding sequence of arg defines the Abelson subfamily of cytoplasmic tyrosine kinases.Proc Natl Acad Sci U S A. 1990;87:5802–5806.
Tybulewicz VLJ, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene.Cell. 1991;65:1153–1163.
Schwartzberg PL, Stall AM, Hardin JD, et al. Mice homozygous for ablm1 mutation show poor viability and depletion of selected B and T cell populations.Cell. 1991;65:1165–1175.
Hardin JD, Boast S, Schwartzberg PL, et al. Abnormal peripheral lymphocyte function in c-abl mutant mice.Cell Immunol. 1996;172:100–107.
Mysliwiec T, Perego R, Kruh GD. Analysis of chimeric gag-Arg/ Abl molecule indicates a distinct negative regulatory role for the Arg C-terminal domain.Oncogene. 1996;12:631–640.
Henkemeyer M, West SR, Gertler FB, Hoffmann FM. A novel tyrosine kinase-independent function of Drosophila abl correlates with proper subcellular localization.Cell. 1990;63:949–960.
Brown L, McCarthy N. A sense-abl response?Nature. 1997;387:450–451.
Welch PJ, Wang JYJ. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle.Cell. 1993;75:779–790.
Kipreos ET, Wang JYJ. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA.Science. 1992;256:382–385.
Yuan ZM, Huang Y,Whang Y, et al. Role of c-Abl tyrosine kinase in growth arrest response to DNA damage.Nature. 1996;382:272–274.
Sawyers CL, McLaughlin J, Goga A, Havlik M, Witte ON. The nuclear tyrosine kinase c-Abl negatively regulates cell growth.Cell. 1994;77:121–131.
Baskaran RLD, Wood LL, Whitaker CE, et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation.Nature. 1997;387:516–519.
Shafman T, Khanna KK, Kedar P, et al. Interaction between ATM protein and c-Abl in response to DNA damage.Nature. 1997;387:520–523.
Yuan ZMT, Utsugisawa T, Ishiko S, et al. Activation of protein kinase C-delta by the c-Abl tyrosine kinase in response to ionizing radiation.Oncogene. 1998;16:1643–1648.
Sun X, Wu F, Datta R, Kharbanda S, Kufe D. Interaction between protein kinase C-delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress.J Biol Chem. 2000;275:7470–7473.
Yuan ZMH, Shioya T, Ishiko X, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage.Nature. 1999;399:814–817.
Gong J, Costanzo A, Yang H, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.Nature. 1999;399:806–809.
Baskaran R, Chiang GG, Wang JYJ. Identification of a binding site in c-Abl tyrosine kinase for the C-terminal repeated domain of RNA polymerase II.Mol Cell Biol. 1996;16:3361–3369.
Kharbanda S, Bharti A, Pei D, et al. The stress response to ionizing radiation involves c-Abl-dependent phosphorylation of SHPTP1.Proc Natl Acad Sci U S A. 1996;93:6898–6901.
Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses.FASEB J. 1995;9:484–496.
Pendergast AM, Traugh JA, Witte ON. Normal cellular and transformation-associated abl protein share common sites for protein kinase C phosphorylation.Mol Cell Biol. 1987;7:4280–4289.
Bharti ASK, Kraeft M, Gounder P, et al. Inactivation of DNA- dependent protein kinase by protein kinase C-delta: implications for apoptosis.Mol Cell Biol. 1998;18:6719–6728.
Cicchetti P, Ridley AJ, Zheng Y, Cerione RA, Baltimore D. 3BP-1, an SH3 domain binding protein, has GAP activity for Rac and inhibits growth factor-induced membrane ruffling in fibroblasts.EMBO J. 1995;14:3127–3135.
Shi Y, Alin K, Goff SP. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity.Genes Dev. 1995;9:2583–2597.
Dai Z, Pendergast AM. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity.Genes Dev. 1995;9:2569–2582.
Zhu J, Shore SK. c-ABL tyrosine kinase activity is regulated by association with a novel SH3 domain-binding protein.Mol Cell Biol. 1996;16:7054–7062.
Afar DEH, Han L, McLaughlin J, et al. Regulation of the oncogenic activity of BCR-ABL by a tightly bound substrate protein RIN1.Immunity. 1997;6:773–782.
Wen S, Van Etten RA. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity.Genes Dev. 1997;11:2456–2467.
Dupraz P, Rebai N, Klein SJ, Beaulieu N, Jolicoeur P. The murine AIDS virus Gag precursor protein binds to the SH3 domain of c-Abl.J Virol. 1997;71:2615–2620.
Taki T, Shibuya N, Taniwaki M, et al. Abi-1, a human homolog to mouse Abl-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23).Blood. 1998;92:1125–1130.
Wetzler M, Talpaz M, Yee G, et al. Cell cycle-related shifts in subcellular localization of BCR: association with mitotic chromosomes and with heterochromatin.Proc Natl Acad Sci U S A. 1995;92:3488–3492.
McWhirter JR, Galasso DL, Wang JYJ. A coiled-coil oligomerization domain of bcr is essential for the transforming function of bcrabl oncoproteins.Mol Cell Biol. 1993;13:7587–7595.
Maru Y,Afar DE,Witte ON, Shibuya M. The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain.J Biol Chem. 1996;271:15353–15357.
Maru Y, Witte ON. The BCR gene encodes a novel serine/threonine kinase activity within a single exon.Cell. 1991;67:459–468.
Liu J, Wu Y, Ma GZ, et al. Inhibition of Bcr serine kinase by tyrosine phosphorylation.Mol Cell Biol. 1996;16:998–1005.
Wu Y, Liu J, Arlinghaus RB. Requirement of two specific tyrosine residues for the catalytic activity of Bcr serine/threonine kinase.Oncogene. 1998;16:141–146.
Li J, Smithgall TE. Coexpression with BCR induces activation of the Fes tyrosine kinase and phosphorylation of specific N-terminal BCR tyrosine residues.J Biol Chem. 1996;271:32930–32936.
Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB. Bcr phosphorylated on tyrosine 177 binds to Grb2.Oncogene. 1997;14:2367–2372.
Pendergast AM, Muller AJ, Havlik MH, et al. BCR sequences essential for transformation by BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner,Cell. 1991;66:161–171.
Reuther GW, Fu H, Cripe LD, Collier J, Pendergast AM. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family.Science. 1994;266:129–133.
Yaffe MB, Rittinger K, Volinia S, et al. The structural basis for 14-3-3:phosphopeptide binding specificity.Cell. 1997;91:961–971.
Braselmann S, McCormick F. BCR and Raf form a complex in vivo via 14-3-3 proteins.EMBO J. 1995;14:4839–4848.
Adams JM, Houston H,Allen J, Lints T, Harvey R. The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization.Oncogene. 1992;7:611–618.
Chuang T, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM. Abr and Bcr are multifunctional regulators of the Rho GTP- binding protein family.Proc Natl Acad Sci U S A. 1995;92:10282–10286.
Hart MJ, Maru Y, Leonard D,Witte ON, Cerione RA. A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Raslike protein CDC42Hs.Science. 1992;258:812–815.
Maru Y, Kobayashi T, Tanaka K, Shibuya M. BCR binds to the xeroderma pigmentosum group B protein.Biochem Biophys Res Commun. 1999;260:309–312.
Haslam RJ, Koide H, Hemmings BA. Pleckstrin domain homology.Nature. 1993;363:309–310.
Rodriguez-Viciana P, Warne PH, Khwaja A, et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras.Cell. 1997;89:457–467.
Nimnual AS, Yatsula BA, Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos.Science. 1998;279:560–563.
Heisterkamp N, Kaartinen V, van Soest S, Bokoch GM, Groffen J. Human ABR encodes a protein with GAPrac activity and homology to the Dbl nucleotide exchange factor domain.J Biol Chem. 1993;268:16903–16906.
Diekmann D, Brill S, Garrett MD, et al. Bcr encodes a GTPaseactivating protein for p21Rac.Nature. 1991;351:400–402.
Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.Cell. 1992;70:389–399.
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth-factor-induced membrane ruffling.Cell. 1992;70:401–410.
Olson MF. Guanine nucleotide exchange factors for the Rho GTPases: a role in human disease?J Mol Med. 1996;74:563–571.
Ridley AJ, Self AJ, Kasmi F, et al. Rho family GTPase activating protein p190, bcr, and RhoGAP show distinct specificities in vitro and in vivo.EMBO J. 1993;12:5151–5160.
Voncken JW, Schaick H, Kaartinen V, et al. Increased neutrophil respiratory burst in bcr-null mutants.Cell. 1995;80:719–728.
Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21Rac1.Nature. 1990;353:668–670.
Daley GQ, McLaughlin J, Witte ON, Baltimore D. The CML- specific P210bcr/abl protein, unlike v-abl, does not transform NIH3T3 fibroblasts.Science. 1987;237:532–535.
Lugo TR, Witte ON. The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc.Mol Cell Biol. 1989;9:1263–1270.
Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products.Science. 1990;247:1079–1082.
Mclaughlin J, Chianese E, Witte ON. In vitro transformation of immature hematopoietic cells by the P210BCR/ABL oncogene product of the Philadelphia chromosome.Proc Natl Acad Sci U S A. 1987;84:6558–6562.
Maru Y, Hirosawa H, Shibuya M. An oncogenic form of the Flt-1 kinase has a tubulogenic potential in a sinusoidal endothelial cell line.Eur J Cell Biol. 2000;79:130–143.
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis.Science. 1997;275:964–967.
Daley GQ, Baltimore D. Transformation of an interleukin 3- dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein.Proc Natl Acad Sci U S A. 1988;85:9312–9316.
Gishizky ML, Witte ON. Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro.Science. 1992;256:836–839.
Daley GQ, van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210BCr-ABL gene of the Philadelphia chromosome.Science. 1990;247:824–830.
Kelliher M, Knott A, McLaughlin J, Witte ON, Rosenberg N. Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ABL oncogene.Mol Cell Biol. 1991;11:4710–4716.
Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukemia in man, induces multiple haemopoietic neoplasms in mice.EMBO J. 1990;9:1069–1078.
Quackenbush RC, Reuther GW, Miller JP, Courtney KD, Pear WS, Pendergast AM. Analysis of the biologic properties of p230 Bcr- Abl reveals unique and overlapping properties with the oncogenic p185 and p210 Bcr-Abl tyrosine kinases.Blood. 2000;95:2913–2921.
Li S, Ilaria RL Jr, Million RP, Daley GQ, van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity.J Exp Med. 1999;189:1399–1412.
Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukemia in bcr/abl transgenic mice.Nature. 1990;344:251–253.
Voncken JW, Kaartinen V, Pattengale PK, Germeraad WTV, Groffen J, Heisterkamp N. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice.Blood. 1995;86:4603–4611.
Shah NP, Witte ON, Denny CT. Characterization of the BCR promoter in Philadelphia chromosome-positive and-negative cell lines.Mol Cell Biol. 1991;11:1854–1860.
Honda H, Ushijima T, Wakazono K, et al. Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML.Blood. 2000;95:1144–1150.
Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ. BCR- ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells.Proc Natl Acad Sci U S A. 1999;96:13186–13190.
Cambier N, Zhang Y, Vairo G, et al. Expression of BCR-ABL in M1 myeloid leukemia cells induces differentiation without arresting proliferation.Oncogene. 1999;18:343–352.
Pierce A, Owen-Lynch PJ, Spooncer E, Dexter TM, Whetton AD. p210 Bcr-Abl expression in a primitive multipotent haematopoietic cell line models the development of chronic myeloid leukaemia.Oncogene. 1998;17:667–672.
Amarante-Mendes GP, Kim CN, Liu L, et al. BCR-ABL exerts its anti-apoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3.Blood. 1998;91:1700–1705.
Jamienson L, Carpenter L, Binden TJ, Fields AP. Protein kinase C-iota activity is necessary for Bcr-Abl-mediated resistance to drug-induced apoptosis.J Biol Chem. 1999;274:3927–3930.
Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein.Proc Natl Acad Sci U S A. 1999;96:203–207.
Goga A, McLaughlin J, Pendergast AM, et al. Oncogenic activation of c-ABL by mutation within its last exon.Mol Cell Biol. 1993;13:4967–4975.
Allen PB, Wiedemann LM. An activating mutation in the ATP binding site of the ABL kinase domain.J Biol Chem. 1996;271:19585–19591.
Muller AJ, Young JC, Pendergast AM, Pondel M, Littman DR, Witte ON. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias.Mol Cell Biol. 1991;11:1785–1792.
Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src.Nat. 1997;385:595–602.
Barila D, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity.Nature Genet. 1998;18:280–282.
Maru Y, Witte ON, Shibuya M. Deletion of the ABL SH3 domain reactivates de-oligomerized BCR-ABL for growth-factor independence.FEBS Lett. 1996;379:244–246.
Goga A, McLaughlin J, Afar DEH, Saffran DC, Witte ON. Alternative signals to Ras for hematopoietic transformation by the BCR-ABL oncogene.Cell. 1995;82:981–988.
Afar DEH, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of BCR-ABL point mutants with c-Myc.Science. 1994;264:424–426.
Heldin CH. Dimerization of cell surface receptors in signal transduction.Cell. 1995;80:213–223.
McWhirter JR, Wang JYJ. Effect of Bcr sequences on the cellular function of the Bcr-Abl oncoprotein.Oncogene. 1997;15:1625–1634.
Golub TR, Goga A, Barker GF, et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia.Mol Cell Biol. 1996;16:4107–4116.
McWhirter JR, Wang JYJ. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias.EMBO J. 1993;12:1533–1546.
Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell. 1993;75:175–185.
LaMontagne KR Jr, Hannon G, Tonks NK. Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells.Proc Natl Acad Sci U S A. 1998;95:14094–14099.
Feng G, Ouyang Y, Hu D, Shi Z, Gentz R, Ni J. Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway.J Biol Chem. 1996;271:12129–12132.
Liu SK, McGlade CJ. Gads is a novel SH2 and SH3 domaincontaining adaptor protein that binds to tyrosine-phosphorylated Shc.Oncogene. 1998;17:3073–3082.
Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway.EMBO J. 1994;13:764–773.
Skorski T, Nieborowska-Skorska M, Szczylik C, et al. c-Raf-1 serine/threonine kinase is required in BCR-ABL-dependent and normal hematopoiesis.Cancer Res. 1995;55:2275–2278.
Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation.Proc Natl Acad Sci U S A. 1995;92:11746–11750.
Kabarowski JHS,Allen PB, Wiedemann LM. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth-factor dependent cells.EMBO J. 1994;13:5887–5895.
Qiu R-G, Chen J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation.Nature. 1995;374:457–459.
Coso OA, Chiariello M,Yu J, et al. The small GTP-binding proteins Rac1 and CDC42 regulate the activity of JNK/SAPK signaling pathway.Cell. 1995;81:1137–1146.
Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation.Mol Cell Biol. 1995;15:6443–6453.
Skorski T,Wlodarski P, Daheron L, et al. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP-binding protein Rac.Proc Natl Acad Sci U S A. 1998;95:11858–11862.
Danial NN, Rothman P. JAK-STAT signaling activated by Abl oncogenes.Oncogene. 2000;19:2523–2531.
Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers C. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia.Oncogene. 1996;13:247–254.
Ilaria RL, van Etten RA. P210 and P190BCR-ABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.J Biol Chem. 1996;271:31704–31710.
Salomoni P, Wasik MA, Riedel RF, et al. Expression of constitutively active Raf-1 in the mitochondria restores anti-apoptotic and leukemogenic potential of a transformation-deficient BCr/ABL mutant.J Exp Med. 1995;187:1995–2007.
Neshat MS, Raitano AB,Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf.Mol Cell Biol. 2000;20:1179–1186.
Majewski M, Nieborowska-Skorska M, Salomoni P, et al. Activation of mitochondrial Raf-1 is involved in the anti-apoptotic effects of Akt.Cancer Res. 1999;59:2815–2819.
Skorski T, Nieborowska-Skorska M, Wlodarski P, et al. The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion, and homing.Blood. 1998;91:406–418.
Afar DEH, McLaughlin J, Sherr CJ, Witte ON, Roussel MF. Signaling by ABL oncogenes through cyclin D1.Proc Natl Acad Sci U S A. 1995;92:9540–9544.
Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR-ABL requires activation of a PI3K/Akt-dependent pathway.EMBO J. 1997;16:6151–6161.
Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogene.Cell. 1992;70:901–910.
Rodriguez-Viciana P, Warne PH, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras.Nature. 1994;370:527–532.
Jain SK, Langdon WY, Varticovski L. Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase.Oncogene. 1997;14:2217–2228.
Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy.Mol Cell Biol. 1999;19:6918–6928.
Anderson SM, Mladenovic J. The BCR-ABL oncogene requires both kinase and src-homology 2 domain to induce cytokine secretion.Blood. 1996;87:238–244.
Nieborowska-Skorska M, Wasik MA, Slupianek A, et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis.J Exp Med. 1999;189:1229–1242.
Horita M, Andreu EJ, Benito A, et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL.J Exp Med. 2000;191:977–984.
Danial NN, Losman JA, Lu T, et al. Direct interaction of Jak1 and v-ABL is required for v-ABL-induced activation of STATs and proliferation.Mol Cell Biol. 1998;18:6795–6804.
Uemura N, Griffin JD. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration.J Biol Chem. 1999;274:37525–37532.
Uemura N, Salgia R, Ewaniuk DS, Little MT, Griffin JD. Involvement of the adapter protein CRKL in integrin-mediated adhesion.Oncogene. 1999;18:3343–3353.
Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukemia.Nature. 1987;328:342–344.
Kramer A, Horner S, Willer A, et al. Adhesion to fibronectin stimulates proliferation of wild-type and bcr/abl-transfected murine hematopoietic cells.Proc Natl Acad Sci U S A. 1999;96:2087–2092.
Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression.Cell. 1996;87:733–743.
Maru Y, Yamaguchi S, Shibuya M. Flt-1, a receptor for vascularendothelial growth factor, has transforming and morphogenic potentials.Oncogene. 1998;16:2585–2595.
Shi CS, Tuscano J, Kehrl JH. Adaptor proteins CRK and CRKL associate with the serine/threonine protein kinase GCKR promoting GCKR and SAPK activation.Blood. 2000;95:776–782.
Senechal K, Heaney C, Druker B, Sawyers CL. Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells.Mol Cell Biol. 1998;18:5082–5090.
Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D. Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase.Oncogene. 1998;17:1889–1892.
Kashige N, Carpino N, Kobayashi R. Tyrosine phosphorylation of p62dok by p210bcr-abl inhibits RasGAP activity.Proc Natl Acad Sci U S A. 2000;97:2093–2098.
Cong F, Yuan B, Goff SP. Characterization of a novel member of the DOK family that binds and modulates Abl signaling.Mol Cell Biol. 1999;19:8314–8325.
Voncken JW, Kaartinen V, Groffen J, Heisterkamp N. Bcr/Abl associated leukemogenesis in bcr null mutant mice.Oncogene. 1998;16:2029–2032.
Wu Y, Ma G, Lu D, et al. Bcr: a negative regulator of the Bcr-Abl oncoprotein.Oncogene. 1999;18:4416–4424.
Lionberger JM, Wilson MB, Smithgall TE. Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck.J Biol Chem. 2000;275:18581–18585.
Lionberger JM, Smithgall TE. The c-Fes protein-tyrosine kinase suppresses cytokine-independent outgrowth of myeloid leukemia cells induced by Bcr-Abl.Cancer Res. 2000;60:1097–1103.
Warmuth M, Bergmann M, Pries A, Hauslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with BCR-ABL by a kinase-independent mechanism and phosphorylates the Grb-2- binding site of Bcr.J Biol Chem. 1997;272:33260–33270.
Bai RY, Jahn T, Schrem S, et al. The SH2-containing adapter protein GRB10 interacts with BCR-ABL.Oncogene. 1998;7:941–948.
Heriche JK, Chambaz EM. Protein kinase CK2alpha is a target for the Abl and Bcr-Abl tyrosine kinases.Oncogene. 1998;17:13–18.
Hamdane M, David-Cordonnier M, D’Halluin JC. Activation of p65NF-kB protein by p210BCR-ABL in a myeloid cell line.Oncogene. 1997;15:2267–2275.
Cohen L, Mohr R, Chen Y, et al. Transcriptional activation of a raslike gene (kir) by oncogenic tyrosine kinases.Proc Natl Acad Sci U S A. 1994;91:12448–12452.
Perrotti D, Bonatti S, Trotta R, et al. TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis.EMBO J. 1998;17:4442–4455.
Sattler M, Verma S, Byrne CH, et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis.Mol Cell Biol. 1999;19:7473–7480.
Dai Z, Quackenbush RC, Courtney KD, et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway.Genes Dev. 1998;12:1415–1424.
Gribble SM, Sinclair PB, Grace C, Green AR, Nacheva EP. Comparative analysis of G-banding, chromosome painting, locus-specific fluorescence in situ hybridization, and comparative genomic hybridization in chronic myeloid leukemia blast crisis.Cancer Genet Cytogenet. 1999;111:7–17.
Wada C, Shionoya S, Fujino Y, et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogeneous leukemia.Blood. 1994;8:3449–3456.
Feinstein E, Cimino G, Gale RP, et al. p53 in chronic myelogenous leukemia in acute phase.Proc Natl Acad Sci U S A. 1991;88:6293–6297.
Towatari M, Adachi K, Kato H, Saito H. Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia.Blood. 1991;78:2178–2181.
Sill H, Goldman JM, Cross NCP. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia.Blood. 1995;85:2013–2016.
Le Maistre A, Lee MS,Talpaz M, et al. Ras oncogene mutations are rare late stage events in chronic myelogenous leukemia.Blood. 1989;73:889–891.
Mitani K, Ogawa S, Tanaka T, et al. Generation of AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia.EMBO J. 1994;13:504–510.
Skorski T, Nieborowska-Skorska M, Wlodarski P, et al. Blastic transformation of p53-deficient bone marrow cells by p210BCR-ABL tyrosine kinase.Proc Natl Acad Sci U S A. 1996;93:13137–13142.
Laneuville P, Sun G, Timm M, Vekemans M. Clonal evolution in a myeloid cell line transformed to interleukin-3 independent growth by retroviral transduction and expression of p210bcr/abl.Blood. 1992;80:1788–1797.
Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts.Science. 1997;275:1649–1652.
Sattler M, Verma S, Shrikhande G, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells.J Biol Chem. 2000;275:24273–24278.
Birnboim HC. DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate.Science. 1982;215:1247–1249.
Weitberg AB, Weitzman SA, Destrempes M, Latt SA, Stossel T. Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells.N Engl J Med. 1983;308:26–30.
Farzaneh F, Zalin R, Brill D, Shall S. DNA strand breaks and ADP- ribosyl transferase activation during cell differentiation.Nature. 1982;300:362–366.
Soddu S, Blandino G, Scargigli R, et al. Interference with p53 protein inhibits hematopoietic and muscle differentiation.J Cell Biol. 1996;134:193–204.
Feinstein E, Gale RP, Reed J, Canaani E. Expression of the normal p53 gene induces differentiation of K562 cells.Oncogene. 1992;7:1853–1857.
Hoeijmakers JHJ, Egly JM, Vermeulen W. TFIIH: a key component in multiple DNA transactions.Curr Opin Genet Dev. 1996;6:26–33.
Canitrot Y, Lautier D, Laurent G, et al. Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta.Oncogene. 1999;18:2676–2680.
Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea.Blood. 1993;82:398–407.
Era T, Witte ON. Regulated expression of P210BCR-ABL during embryonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate.Proc Natl Acad Sci U S A. 2000;97:1737–1742.
Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors.Cell. 1993;74:823–832.
Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology.Cell. 1997;88:287–298.
Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia.Proc Natl Acad Sci U S A. 1999;96:12804–12809.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Maru, Y. Molecular Biology of Chronic Myeloid Leukemia. Int J Hematol 73, 308–322 (2001). https://doi.org/10.1007/BF02981955
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02981955