Skip to main content

Advertisement

Log in

Molecular Biology of Chronic Myeloid Leukemia

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, PI3 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis.The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Japanese Ministry of Health and Welfare. http://www.mhw.go.jp.

  2. SEER Cancer Statistics Review 1973–1997, National Cancer Institute. http://www.seer.ims.nci.nih.gov.

  3. Kantarjian HM, Talpaz M, O’Brien S, et al. Chronic myelogenous leukemia—progress at the M. D.Anderson Cancer Center over the past two decades and future directions: first Emil J Freireich Award Lecture.Clin Cancer Res. 1997;3:2723–2733.

    PubMed  CAS  Google Scholar 

  4. Nowell PV, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia.Science. 1960;132:1497.

    Google Scholar 

  5. Barr RD, Fialkow PJ. Clonal origin of chronic myelocytic leukemia.N Engl J Med. 1973;289:307–309.

    Article  PubMed  CAS  Google Scholar 

  6. Moore S, Haylock DN, Levesque JP, et al. Stem cell factor as a single agent induces selective proliferation of the Philadelphia chromosome positive fraction of chronic myeloid leukemia CD34(+) cells.Blood. 1998;92:2461–2470.

    PubMed  CAS  Google Scholar 

  7. Heyssel R, Brill AB, Woodbury L, et al. Leukemia in Hiroshima atomic bomb survivors.Blood. 1960;15:313–331.

    PubMed  CAS  Google Scholar 

  8. Deininger MWN,Bose S,Gora-Tybor J,Yan X, Goldman JM, Melo JV. Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation.Cancer Res. 1998;5:421–425.

    Google Scholar 

  9. Kozubek S, Lukasova E, Ryznar L, et al. Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes.Blood. 1997;89:4537–4545.

    PubMed  CAS  Google Scholar 

  10. Jacobs A. Benzene and leukemia.Br J Haematol. 1989;72:119–121.

    Article  PubMed  CAS  Google Scholar 

  11. Sawyers CL. Chronic myeloid leukemia.N Engl J Med. 1999;340:1330–1340.

    Article  PubMed  CAS  Google Scholar 

  12. Dunham I, Shimizu N, Roe BA, et al. The DNA sequence of human chromosome 22.Nature. 1999;402:489–495.

    Article  PubMed  CAS  Google Scholar 

  13. Jeffs AR, Benjes SM, Smith TL, Sowerby SJ, Morris CM. The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukemia.Hum Mol Genet 1998;7:767–776.

    Article  PubMed  CAS  Google Scholar 

  14. Chissoe SL, Bodenteich A, Wang Y, et al. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation.Genomics. 1995;27:67–82.

    Article  PubMed  CAS  Google Scholar 

  15. Hermans A, Heisterkamp N, Lindern M, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphocytic leukemia.Cell. 1987;51:33–40.

    Article  PubMed  CAS  Google Scholar 

  16. Groffen J, Stephenson JR, Heisterkamp N, Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22.Cell. 1984;36:93–99.

    Article  PubMed  CAS  Google Scholar 

  17. Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myelogenous leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction).Blood. 1996;88:2410–2414.

    CAS  PubMed  Google Scholar 

  18. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype.Blood. 1996;88:2375–2384.

    PubMed  CAS  Google Scholar 

  19. Melo JV, Gordon DE, Cross NCP, Goldman JM. The ABL-BCR fusion gene is expressed in chronic myeloid leukemia.Blood. 1993;81:158–165.

    PubMed  CAS  Google Scholar 

  20. Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia.Blood. 2000;95:738–743.

    PubMed  CAS  Google Scholar 

  21. Ravandi F, Cortes J, Albitar M, et al. Chronic myelogenous leukaemia with p185(BCR/ABL) expression: characteristics and clinical significance.Br J Haematol. 1999;107:581–586.

    Article  PubMed  CAS  Google Scholar 

  22. Sandberg AA, Kohno S, Wake N, Minowada J. Chromosomes and causation of human cancer and leukemia Ph1-positive ALL: an entity within myeloproliferative disorders?Cancer Genet Cytogenet. 1980;2:145–174.

    Article  Google Scholar 

  23. Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NCP. p190BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias.Blood. 1996;87:5213–5217.

    PubMed  Google Scholar 

  24. Briz M, Vilches C, Cabrera R, Fores R, Fernandez MN. Typical chronic myelogenous leukemia with e19a2 junction BCR/ABL transcript.Blood. 1997;90:5024–5025.

    PubMed  CAS  Google Scholar 

  25. How GF, Tan LT, Lim LC. Chronic myeloid leukemia with e19a2 (c3a2) BCR/ABL fusion junction: is it truly a benign disease?Leukemia. 1998;12:1166–1167.

    Article  PubMed  CAS  Google Scholar 

  26. Hochhaus A, Reiter A, Skladny H, et al. A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia.Blood. 1996;88:2236–2240.

    PubMed  CAS  Google Scholar 

  27. How GF, Lim LC, Kulkarni S,Tan LT,Tan P, Cross NC. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons.Br J Haematol. 1999;105:434–436.

    Article  PubMed  CAS  Google Scholar 

  28. Melo JV, Yan X, Diamond J, Goldman JM. Lack of imprinting of the ABL gene.Nat Genet. 1994;8:318–319.

    Article  PubMed  CAS  Google Scholar 

  29. Abelson HT, Rabstein LS. Lymphosarcome: virus-induced thymicindependent disease in mice.Cancer Res. 1970;30:2213–2222.

    PubMed  CAS  Google Scholar 

  30. Rosenberg N, Baltimore D. Abelson virus. In: Klein G, ed.Viral Oncoloy. New York, NY: Raven Press; 1980:187–203.

    Google Scholar 

  31. Lewis JM, Baskaran R,Taagepera S, Schwartz MA, Wang JYJ. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmicnuclear transport.Proc Natl Acad Sci U S A. 1996;93:15174–15179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene.Cell. 1986;47:277–284.

    Article  PubMed  CAS  Google Scholar 

  33. Ben-Neriah Y, Bernards A, Paskind M, Daley GQ, Baltimore D. Alternative 5′ exons in c-abl mRNA.Cell. 1986;44:577–586.

    Article  PubMed  CAS  Google Scholar 

  34. Meijer D, Hermans A, von Lindern M, et al. Molecular characterization of the testis specific c-abl mRNA in mouse.EMBO J. 1987;6:4041–4048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization.Cell. 1989;58:669–678.

    Article  PubMed  Google Scholar 

  36. Birchenall-Roberts MC, Ruscetti FW, Kasper JJ, et al. Nuclear localization of v-Abl leads to complex formation with cyclic AMP response element (CRE)-binding protein and transactivation through CRE motifs.Mol Cell Biol. 1995;15:6088–6099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Goga A, Liu X, Hambuch TM, et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase.Oncogene. 1995;11:791–799.

    PubMed  CAS  Google Scholar 

  38. Jackson P, Baltimore D. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl.EMBO J. 1989;8:449–456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wetzler M,Talpaz M, van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation.J Clin Invest. 1993;92:1925–1939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hardin JD, Boast S, Mendelsohn M, Santos K, Goff SP. Transgenes encoding both type I and type IV c-abl proteins rescue the lethality of c-abl mutant mice.Oncogene. 1996;12:2669–2677.

    PubMed  CAS  Google Scholar 

  41. Pisabarro MT, Serrano L. Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain.Biochemistry. 1996;35:10634–10640.

    Article  PubMed  CAS  Google Scholar 

  42. Dikstein R, Heffetz D, Ben-Neriah Y, Shaul Y. c-abl has a sequence-specific enhancer binding activity.Cell. 1992;69:751–757.

    Article  PubMed  CAS  Google Scholar 

  43. Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity.J Cell Biol. 1994;124:325–340.

    Article  PubMed  Google Scholar 

  44. Kruh GD, Perego R, Miki T, Aaronson SA. The complete coding sequence of arg defines the Abelson subfamily of cytoplasmic tyrosine kinases.Proc Natl Acad Sci U S A. 1990;87:5802–5806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tybulewicz VLJ, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene.Cell. 1991;65:1153–1163.

    Article  CAS  PubMed  Google Scholar 

  46. Schwartzberg PL, Stall AM, Hardin JD, et al. Mice homozygous for ablm1 mutation show poor viability and depletion of selected B and T cell populations.Cell. 1991;65:1165–1175.

    Article  CAS  PubMed  Google Scholar 

  47. Hardin JD, Boast S, Schwartzberg PL, et al. Abnormal peripheral lymphocyte function in c-abl mutant mice.Cell Immunol. 1996;172:100–107.

    Article  PubMed  CAS  Google Scholar 

  48. Mysliwiec T, Perego R, Kruh GD. Analysis of chimeric gag-Arg/ Abl molecule indicates a distinct negative regulatory role for the Arg C-terminal domain.Oncogene. 1996;12:631–640.

    PubMed  CAS  Google Scholar 

  49. Henkemeyer M, West SR, Gertler FB, Hoffmann FM. A novel tyrosine kinase-independent function of Drosophila abl correlates with proper subcellular localization.Cell. 1990;63:949–960.

    Article  PubMed  CAS  Google Scholar 

  50. Brown L, McCarthy N. A sense-abl response?Nature. 1997;387:450–451.

    Article  PubMed  CAS  Google Scholar 

  51. Welch PJ, Wang JYJ. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle.Cell. 1993;75:779–790.

    Article  CAS  PubMed  Google Scholar 

  52. Kipreos ET, Wang JYJ. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA.Science. 1992;256:382–385.

    Article  PubMed  CAS  Google Scholar 

  53. Yuan ZM, Huang Y,Whang Y, et al. Role of c-Abl tyrosine kinase in growth arrest response to DNA damage.Nature. 1996;382:272–274.

    Article  CAS  PubMed  Google Scholar 

  54. Sawyers CL, McLaughlin J, Goga A, Havlik M, Witte ON. The nuclear tyrosine kinase c-Abl negatively regulates cell growth.Cell. 1994;77:121–131.

    Article  PubMed  CAS  Google Scholar 

  55. Baskaran RLD, Wood LL, Whitaker CE, et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation.Nature. 1997;387:516–519.

    Article  PubMed  CAS  Google Scholar 

  56. Shafman T, Khanna KK, Kedar P, et al. Interaction between ATM protein and c-Abl in response to DNA damage.Nature. 1997;387:520–523.

    Article  PubMed  CAS  Google Scholar 

  57. Yuan ZMT, Utsugisawa T, Ishiko S, et al. Activation of protein kinase C-delta by the c-Abl tyrosine kinase in response to ionizing radiation.Oncogene. 1998;16:1643–1648.

    Article  PubMed  CAS  Google Scholar 

  58. Sun X, Wu F, Datta R, Kharbanda S, Kufe D. Interaction between protein kinase C-delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress.J Biol Chem. 2000;275:7470–7473.

    Article  PubMed  CAS  Google Scholar 

  59. Yuan ZMH, Shioya T, Ishiko X, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage.Nature. 1999;399:814–817.

    Article  PubMed  CAS  Google Scholar 

  60. Gong J, Costanzo A, Yang H, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.Nature. 1999;399:806–809.

    Article  PubMed  CAS  Google Scholar 

  61. Baskaran R, Chiang GG, Wang JYJ. Identification of a binding site in c-Abl tyrosine kinase for the C-terminal repeated domain of RNA polymerase II.Mol Cell Biol. 1996;16:3361–3369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kharbanda S, Bharti A, Pei D, et al. The stress response to ionizing radiation involves c-Abl-dependent phosphorylation of SHPTP1.Proc Natl Acad Sci U S A. 1996;93:6898–6901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses.FASEB J. 1995;9:484–496.

    Article  PubMed  CAS  Google Scholar 

  64. Pendergast AM, Traugh JA, Witte ON. Normal cellular and transformation-associated abl protein share common sites for protein kinase C phosphorylation.Mol Cell Biol. 1987;7:4280–4289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bharti ASK, Kraeft M, Gounder P, et al. Inactivation of DNA- dependent protein kinase by protein kinase C-delta: implications for apoptosis.Mol Cell Biol. 1998;18:6719–6728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cicchetti P, Ridley AJ, Zheng Y, Cerione RA, Baltimore D. 3BP-1, an SH3 domain binding protein, has GAP activity for Rac and inhibits growth factor-induced membrane ruffling in fibroblasts.EMBO J. 1995;14:3127–3135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Shi Y, Alin K, Goff SP. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity.Genes Dev. 1995;9:2583–2597.

    Article  PubMed  CAS  Google Scholar 

  68. Dai Z, Pendergast AM. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity.Genes Dev. 1995;9:2569–2582.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu J, Shore SK. c-ABL tyrosine kinase activity is regulated by association with a novel SH3 domain-binding protein.Mol Cell Biol. 1996;16:7054–7062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Afar DEH, Han L, McLaughlin J, et al. Regulation of the oncogenic activity of BCR-ABL by a tightly bound substrate protein RIN1.Immunity. 1997;6:773–782.

    Article  PubMed  CAS  Google Scholar 

  71. Wen S, Van Etten RA. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity.Genes Dev. 1997;11:2456–2467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dupraz P, Rebai N, Klein SJ, Beaulieu N, Jolicoeur P. The murine AIDS virus Gag precursor protein binds to the SH3 domain of c-Abl.J Virol. 1997;71:2615–2620.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Taki T, Shibuya N, Taniwaki M, et al. Abi-1, a human homolog to mouse Abl-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23).Blood. 1998;92:1125–1130.

    PubMed  CAS  Google Scholar 

  74. Wetzler M, Talpaz M, Yee G, et al. Cell cycle-related shifts in subcellular localization of BCR: association with mitotic chromosomes and with heterochromatin.Proc Natl Acad Sci U S A. 1995;92:3488–3492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. McWhirter JR, Galasso DL, Wang JYJ. A coiled-coil oligomerization domain of bcr is essential for the transforming function of bcrabl oncoproteins.Mol Cell Biol. 1993;13:7587–7595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Maru Y,Afar DE,Witte ON, Shibuya M. The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain.J Biol Chem. 1996;271:15353–15357.

    Article  PubMed  CAS  Google Scholar 

  77. Maru Y, Witte ON. The BCR gene encodes a novel serine/threonine kinase activity within a single exon.Cell. 1991;67:459–468.

    Article  PubMed  CAS  Google Scholar 

  78. Liu J, Wu Y, Ma GZ, et al. Inhibition of Bcr serine kinase by tyrosine phosphorylation.Mol Cell Biol. 1996;16:998–1005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wu Y, Liu J, Arlinghaus RB. Requirement of two specific tyrosine residues for the catalytic activity of Bcr serine/threonine kinase.Oncogene. 1998;16:141–146.

    Article  PubMed  CAS  Google Scholar 

  80. Li J, Smithgall TE. Coexpression with BCR induces activation of the Fes tyrosine kinase and phosphorylation of specific N-terminal BCR tyrosine residues.J Biol Chem. 1996;271:32930–32936.

    Article  PubMed  CAS  Google Scholar 

  81. Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB. Bcr phosphorylated on tyrosine 177 binds to Grb2.Oncogene. 1997;14:2367–2372.

    Article  PubMed  CAS  Google Scholar 

  82. Pendergast AM, Muller AJ, Havlik MH, et al. BCR sequences essential for transformation by BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner,Cell. 1991;66:161–171.

    Article  PubMed  CAS  Google Scholar 

  83. Reuther GW, Fu H, Cripe LD, Collier J, Pendergast AM. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family.Science. 1994;266:129–133.

    Article  PubMed  CAS  Google Scholar 

  84. Yaffe MB, Rittinger K, Volinia S, et al. The structural basis for 14-3-3:phosphopeptide binding specificity.Cell. 1997;91:961–971.

    Article  PubMed  CAS  Google Scholar 

  85. Braselmann S, McCormick F. BCR and Raf form a complex in vivo via 14-3-3 proteins.EMBO J. 1995;14:4839–4848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Adams JM, Houston H,Allen J, Lints T, Harvey R. The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization.Oncogene. 1992;7:611–618.

    PubMed  CAS  Google Scholar 

  87. Chuang T, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM. Abr and Bcr are multifunctional regulators of the Rho GTP- binding protein family.Proc Natl Acad Sci U S A. 1995;92:10282–10286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hart MJ, Maru Y, Leonard D,Witte ON, Cerione RA. A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Raslike protein CDC42Hs.Science. 1992;258:812–815.

    Article  PubMed  CAS  Google Scholar 

  89. Maru Y, Kobayashi T, Tanaka K, Shibuya M. BCR binds to the xeroderma pigmentosum group B protein.Biochem Biophys Res Commun. 1999;260:309–312.

    Article  PubMed  CAS  Google Scholar 

  90. Haslam RJ, Koide H, Hemmings BA. Pleckstrin domain homology.Nature. 1993;363:309–310.

    Article  PubMed  CAS  Google Scholar 

  91. Rodriguez-Viciana P, Warne PH, Khwaja A, et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras.Cell. 1997;89:457–467.

    Article  PubMed  CAS  Google Scholar 

  92. Nimnual AS, Yatsula BA, Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos.Science. 1998;279:560–563.

    Article  PubMed  CAS  Google Scholar 

  93. Heisterkamp N, Kaartinen V, van Soest S, Bokoch GM, Groffen J. Human ABR encodes a protein with GAPrac activity and homology to the Dbl nucleotide exchange factor domain.J Biol Chem. 1993;268:16903–16906.

    PubMed  CAS  Google Scholar 

  94. Diekmann D, Brill S, Garrett MD, et al. Bcr encodes a GTPaseactivating protein for p21Rac.Nature. 1991;351:400–402.

    Article  PubMed  CAS  Google Scholar 

  95. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.Cell. 1992;70:389–399.

    Article  PubMed  CAS  Google Scholar 

  96. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth-factor-induced membrane ruffling.Cell. 1992;70:401–410.

    Article  PubMed  CAS  Google Scholar 

  97. Olson MF. Guanine nucleotide exchange factors for the Rho GTPases: a role in human disease?J Mol Med. 1996;74:563–571.

    Article  PubMed  CAS  Google Scholar 

  98. Ridley AJ, Self AJ, Kasmi F, et al. Rho family GTPase activating protein p190, bcr, and RhoGAP show distinct specificities in vitro and in vivo.EMBO J. 1993;12:5151–5160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Voncken JW, Schaick H, Kaartinen V, et al. Increased neutrophil respiratory burst in bcr-null mutants.Cell. 1995;80:719–728.

    Article  CAS  PubMed  Google Scholar 

  100. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21Rac1.Nature. 1990;353:668–670.

    Article  Google Scholar 

  101. Daley GQ, McLaughlin J, Witte ON, Baltimore D. The CML- specific P210bcr/abl protein, unlike v-abl, does not transform NIH3T3 fibroblasts.Science. 1987;237:532–535.

    Article  PubMed  CAS  Google Scholar 

  102. Lugo TR, Witte ON. The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc.Mol Cell Biol. 1989;9:1263–1270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products.Science. 1990;247:1079–1082.

    Article  PubMed  CAS  Google Scholar 

  104. Mclaughlin J, Chianese E, Witte ON. In vitro transformation of immature hematopoietic cells by the P210BCR/ABL oncogene product of the Philadelphia chromosome.Proc Natl Acad Sci U S A. 1987;84:6558–6562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Maru Y, Hirosawa H, Shibuya M. An oncogenic form of the Flt-1 kinase has a tubulogenic potential in a sinusoidal endothelial cell line.Eur J Cell Biol. 2000;79:130–143.

    Article  PubMed  CAS  Google Scholar 

  106. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis.Science. 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  107. Daley GQ, Baltimore D. Transformation of an interleukin 3- dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein.Proc Natl Acad Sci U S A. 1988;85:9312–9316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gishizky ML, Witte ON. Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro.Science. 1992;256:836–839.

    Article  PubMed  CAS  Google Scholar 

  109. Daley GQ, van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210BCr-ABL gene of the Philadelphia chromosome.Science. 1990;247:824–830.

    Article  PubMed  CAS  Google Scholar 

  110. Kelliher M, Knott A, McLaughlin J, Witte ON, Rosenberg N. Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ABL oncogene.Mol Cell Biol. 1991;11:4710–4716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukemia in man, induces multiple haemopoietic neoplasms in mice.EMBO J. 1990;9:1069–1078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Quackenbush RC, Reuther GW, Miller JP, Courtney KD, Pear WS, Pendergast AM. Analysis of the biologic properties of p230 Bcr- Abl reveals unique and overlapping properties with the oncogenic p185 and p210 Bcr-Abl tyrosine kinases.Blood. 2000;95:2913–2921.

    CAS  PubMed  Google Scholar 

  113. Li S, Ilaria RL Jr, Million RP, Daley GQ, van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity.J Exp Med. 1999;189:1399–1412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukemia in bcr/abl transgenic mice.Nature. 1990;344:251–253.

    Article  PubMed  CAS  Google Scholar 

  115. Voncken JW, Kaartinen V, Pattengale PK, Germeraad WTV, Groffen J, Heisterkamp N. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice.Blood. 1995;86:4603–4611.

    PubMed  CAS  Google Scholar 

  116. Shah NP, Witte ON, Denny CT. Characterization of the BCR promoter in Philadelphia chromosome-positive and-negative cell lines.Mol Cell Biol. 1991;11:1854–1860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Honda H, Ushijima T, Wakazono K, et al. Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML.Blood. 2000;95:1144–1150.

    PubMed  CAS  Google Scholar 

  118. Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ. BCR- ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells.Proc Natl Acad Sci U S A. 1999;96:13186–13190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Cambier N, Zhang Y, Vairo G, et al. Expression of BCR-ABL in M1 myeloid leukemia cells induces differentiation without arresting proliferation.Oncogene. 1999;18:343–352.

    Article  PubMed  CAS  Google Scholar 

  120. Pierce A, Owen-Lynch PJ, Spooncer E, Dexter TM, Whetton AD. p210 Bcr-Abl expression in a primitive multipotent haematopoietic cell line models the development of chronic myeloid leukaemia.Oncogene. 1998;17:667–672.

    Article  PubMed  CAS  Google Scholar 

  121. Amarante-Mendes GP, Kim CN, Liu L, et al. BCR-ABL exerts its anti-apoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3.Blood. 1998;91:1700–1705.

    PubMed  CAS  Google Scholar 

  122. Jamienson L, Carpenter L, Binden TJ, Fields AP. Protein kinase C-iota activity is necessary for Bcr-Abl-mediated resistance to drug-induced apoptosis.J Biol Chem. 1999;274:3927–3930.

    Article  Google Scholar 

  123. Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein.Proc Natl Acad Sci U S A. 1999;96:203–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Goga A, McLaughlin J, Pendergast AM, et al. Oncogenic activation of c-ABL by mutation within its last exon.Mol Cell Biol. 1993;13:4967–4975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Allen PB, Wiedemann LM. An activating mutation in the ATP binding site of the ABL kinase domain.J Biol Chem. 1996;271:19585–19591.

    Article  PubMed  CAS  Google Scholar 

  126. Muller AJ, Young JC, Pendergast AM, Pondel M, Littman DR, Witte ON. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias.Mol Cell Biol. 1991;11:1785–1792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src.Nat. 1997;385:595–602.

    Article  CAS  Google Scholar 

  128. Barila D, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity.Nature Genet. 1998;18:280–282.

    Article  PubMed  CAS  Google Scholar 

  129. Maru Y, Witte ON, Shibuya M. Deletion of the ABL SH3 domain reactivates de-oligomerized BCR-ABL for growth-factor independence.FEBS Lett. 1996;379:244–246.

    Article  PubMed  CAS  Google Scholar 

  130. Goga A, McLaughlin J, Afar DEH, Saffran DC, Witte ON. Alternative signals to Ras for hematopoietic transformation by the BCR-ABL oncogene.Cell. 1995;82:981–988.

    Article  CAS  PubMed  Google Scholar 

  131. Afar DEH, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of BCR-ABL point mutants with c-Myc.Science. 1994;264:424–426.

    Article  CAS  PubMed  Google Scholar 

  132. Heldin CH. Dimerization of cell surface receptors in signal transduction.Cell. 1995;80:213–223.

    Article  PubMed  CAS  Google Scholar 

  133. McWhirter JR, Wang JYJ. Effect of Bcr sequences on the cellular function of the Bcr-Abl oncoprotein.Oncogene. 1997;15:1625–1634.

    Article  PubMed  CAS  Google Scholar 

  134. Golub TR, Goga A, Barker GF, et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia.Mol Cell Biol. 1996;16:4107–4116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. McWhirter JR, Wang JYJ. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias.EMBO J. 1993;12:1533–1546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell. 1993;75:175–185.

    Article  CAS  PubMed  Google Scholar 

  137. LaMontagne KR Jr, Hannon G, Tonks NK. Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells.Proc Natl Acad Sci U S A. 1998;95:14094–14099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Feng G, Ouyang Y, Hu D, Shi Z, Gentz R, Ni J. Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway.J Biol Chem. 1996;271:12129–12132.

    Article  PubMed  CAS  Google Scholar 

  139. Liu SK, McGlade CJ. Gads is a novel SH2 and SH3 domaincontaining adaptor protein that binds to tyrosine-phosphorylated Shc.Oncogene. 1998;17:3073–3082.

    Article  PubMed  CAS  Google Scholar 

  140. Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway.EMBO J. 1994;13:764–773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Skorski T, Nieborowska-Skorska M, Szczylik C, et al. c-Raf-1 serine/threonine kinase is required in BCR-ABL-dependent and normal hematopoiesis.Cancer Res. 1995;55:2275–2278.

    PubMed  CAS  Google Scholar 

  142. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation.Proc Natl Acad Sci U S A. 1995;92:11746–11750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kabarowski JHS,Allen PB, Wiedemann LM. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth-factor dependent cells.EMBO J. 1994;13:5887–5895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Qiu R-G, Chen J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation.Nature. 1995;374:457–459.

    Article  PubMed  CAS  Google Scholar 

  145. Coso OA, Chiariello M,Yu J, et al. The small GTP-binding proteins Rac1 and CDC42 regulate the activity of JNK/SAPK signaling pathway.Cell. 1995;81:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  146. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation.Mol Cell Biol. 1995;15:6443–6453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Skorski T,Wlodarski P, Daheron L, et al. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP-binding protein Rac.Proc Natl Acad Sci U S A. 1998;95:11858–11862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Danial NN, Rothman P. JAK-STAT signaling activated by Abl oncogenes.Oncogene. 2000;19:2523–2531.

    Article  PubMed  CAS  Google Scholar 

  149. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers C. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia.Oncogene. 1996;13:247–254.

    CAS  PubMed  Google Scholar 

  150. Ilaria RL, van Etten RA. P210 and P190BCR-ABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.J Biol Chem. 1996;271:31704–31710.

    Article  CAS  PubMed  Google Scholar 

  151. Salomoni P, Wasik MA, Riedel RF, et al. Expression of constitutively active Raf-1 in the mitochondria restores anti-apoptotic and leukemogenic potential of a transformation-deficient BCr/ABL mutant.J Exp Med. 1995;187:1995–2007.

    Article  Google Scholar 

  152. Neshat MS, Raitano AB,Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf.Mol Cell Biol. 2000;20:1179–1186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Majewski M, Nieborowska-Skorska M, Salomoni P, et al. Activation of mitochondrial Raf-1 is involved in the anti-apoptotic effects of Akt.Cancer Res. 1999;59:2815–2819.

    PubMed  CAS  Google Scholar 

  154. Skorski T, Nieborowska-Skorska M, Wlodarski P, et al. The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion, and homing.Blood. 1998;91:406–418.

    PubMed  CAS  Google Scholar 

  155. Afar DEH, McLaughlin J, Sherr CJ, Witte ON, Roussel MF. Signaling by ABL oncogenes through cyclin D1.Proc Natl Acad Sci U S A. 1995;92:9540–9544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR-ABL requires activation of a PI3K/Akt-dependent pathway.EMBO J. 1997;16:6151–6161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogene.Cell. 1992;70:901–910.

    Article  PubMed  CAS  Google Scholar 

  158. Rodriguez-Viciana P, Warne PH, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras.Nature. 1994;370:527–532.

    Article  PubMed  CAS  Google Scholar 

  159. Jain SK, Langdon WY, Varticovski L. Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase.Oncogene. 1997;14:2217–2228.

    Article  PubMed  CAS  Google Scholar 

  160. Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy.Mol Cell Biol. 1999;19:6918–6928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Anderson SM, Mladenovic J. The BCR-ABL oncogene requires both kinase and src-homology 2 domain to induce cytokine secretion.Blood. 1996;87:238–244.

    CAS  PubMed  Google Scholar 

  162. Nieborowska-Skorska M, Wasik MA, Slupianek A, et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis.J Exp Med. 1999;189:1229–1242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Horita M, Andreu EJ, Benito A, et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL.J Exp Med. 2000;191:977–984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Danial NN, Losman JA, Lu T, et al. Direct interaction of Jak1 and v-ABL is required for v-ABL-induced activation of STATs and proliferation.Mol Cell Biol. 1998;18:6795–6804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Uemura N, Griffin JD. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration.J Biol Chem. 1999;274:37525–37532.

    Article  PubMed  CAS  Google Scholar 

  166. Uemura N, Salgia R, Ewaniuk DS, Little MT, Griffin JD. Involvement of the adapter protein CRKL in integrin-mediated adhesion.Oncogene. 1999;18:3343–3353.

    Article  PubMed  CAS  Google Scholar 

  167. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukemia.Nature. 1987;328:342–344.

    Article  CAS  PubMed  Google Scholar 

  168. Kramer A, Horner S, Willer A, et al. Adhesion to fibronectin stimulates proliferation of wild-type and bcr/abl-transfected murine hematopoietic cells.Proc Natl Acad Sci U S A. 1999;96:2087–2092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression.Cell. 1996;87:733–743.

    Article  PubMed  CAS  Google Scholar 

  170. Maru Y, Yamaguchi S, Shibuya M. Flt-1, a receptor for vascularendothelial growth factor, has transforming and morphogenic potentials.Oncogene. 1998;16:2585–2595.

    Article  PubMed  CAS  Google Scholar 

  171. Shi CS, Tuscano J, Kehrl JH. Adaptor proteins CRK and CRKL associate with the serine/threonine protein kinase GCKR promoting GCKR and SAPK activation.Blood. 2000;95:776–782.

    PubMed  CAS  Google Scholar 

  172. Senechal K, Heaney C, Druker B, Sawyers CL. Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells.Mol Cell Biol. 1998;18:5082–5090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D. Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase.Oncogene. 1998;17:1889–1892.

    Article  PubMed  CAS  Google Scholar 

  174. Kashige N, Carpino N, Kobayashi R. Tyrosine phosphorylation of p62dok by p210bcr-abl inhibits RasGAP activity.Proc Natl Acad Sci U S A. 2000;97:2093–2098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Cong F, Yuan B, Goff SP. Characterization of a novel member of the DOK family that binds and modulates Abl signaling.Mol Cell Biol. 1999;19:8314–8325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Voncken JW, Kaartinen V, Groffen J, Heisterkamp N. Bcr/Abl associated leukemogenesis in bcr null mutant mice.Oncogene. 1998;16:2029–2032.

    Article  PubMed  CAS  Google Scholar 

  177. Wu Y, Ma G, Lu D, et al. Bcr: a negative regulator of the Bcr-Abl oncoprotein.Oncogene. 1999;18:4416–4424.

    Article  PubMed  CAS  Google Scholar 

  178. Lionberger JM, Wilson MB, Smithgall TE. Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck.J Biol Chem. 2000;275:18581–18585.

    Article  PubMed  CAS  Google Scholar 

  179. Lionberger JM, Smithgall TE. The c-Fes protein-tyrosine kinase suppresses cytokine-independent outgrowth of myeloid leukemia cells induced by Bcr-Abl.Cancer Res. 2000;60:1097–1103.

    PubMed  CAS  Google Scholar 

  180. Warmuth M, Bergmann M, Pries A, Hauslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with BCR-ABL by a kinase-independent mechanism and phosphorylates the Grb-2- binding site of Bcr.J Biol Chem. 1997;272:33260–33270.

    Article  PubMed  CAS  Google Scholar 

  181. Bai RY, Jahn T, Schrem S, et al. The SH2-containing adapter protein GRB10 interacts with BCR-ABL.Oncogene. 1998;7:941–948.

    Article  CAS  Google Scholar 

  182. Heriche JK, Chambaz EM. Protein kinase CK2alpha is a target for the Abl and Bcr-Abl tyrosine kinases.Oncogene. 1998;17:13–18.

    Article  PubMed  CAS  Google Scholar 

  183. Hamdane M, David-Cordonnier M, D’Halluin JC. Activation of p65NF-kB protein by p210BCR-ABL in a myeloid cell line.Oncogene. 1997;15:2267–2275.

    Article  PubMed  CAS  Google Scholar 

  184. Cohen L, Mohr R, Chen Y, et al. Transcriptional activation of a raslike gene (kir) by oncogenic tyrosine kinases.Proc Natl Acad Sci U S A. 1994;91:12448–12452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Perrotti D, Bonatti S, Trotta R, et al. TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis.EMBO J. 1998;17:4442–4455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sattler M, Verma S, Byrne CH, et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis.Mol Cell Biol. 1999;19:7473–7480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Dai Z, Quackenbush RC, Courtney KD, et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway.Genes Dev. 1998;12:1415–1424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Gribble SM, Sinclair PB, Grace C, Green AR, Nacheva EP. Comparative analysis of G-banding, chromosome painting, locus-specific fluorescence in situ hybridization, and comparative genomic hybridization in chronic myeloid leukemia blast crisis.Cancer Genet Cytogenet. 1999;111:7–17.

    Article  PubMed  CAS  Google Scholar 

  189. Wada C, Shionoya S, Fujino Y, et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogeneous leukemia.Blood. 1994;8:3449–3456.

    Google Scholar 

  190. Feinstein E, Cimino G, Gale RP, et al. p53 in chronic myelogenous leukemia in acute phase.Proc Natl Acad Sci U S A. 1991;88:6293–6297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Towatari M, Adachi K, Kato H, Saito H. Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia.Blood. 1991;78:2178–2181.

    PubMed  CAS  Google Scholar 

  192. Sill H, Goldman JM, Cross NCP. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia.Blood. 1995;85:2013–2016.

    PubMed  CAS  Google Scholar 

  193. Le Maistre A, Lee MS,Talpaz M, et al. Ras oncogene mutations are rare late stage events in chronic myelogenous leukemia.Blood. 1989;73:889–891.

    CAS  Google Scholar 

  194. Mitani K, Ogawa S, Tanaka T, et al. Generation of AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia.EMBO J. 1994;13:504–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Skorski T, Nieborowska-Skorska M, Wlodarski P, et al. Blastic transformation of p53-deficient bone marrow cells by p210BCR-ABL tyrosine kinase.Proc Natl Acad Sci U S A. 1996;93:13137–13142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Laneuville P, Sun G, Timm M, Vekemans M. Clonal evolution in a myeloid cell line transformed to interleukin-3 independent growth by retroviral transduction and expression of p210bcr/abl.Blood. 1992;80:1788–1797.

    PubMed  CAS  Google Scholar 

  197. Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts.Science. 1997;275:1649–1652.

    Article  PubMed  CAS  Google Scholar 

  198. Sattler M, Verma S, Shrikhande G, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells.J Biol Chem. 2000;275:24273–24278.

    Article  CAS  PubMed  Google Scholar 

  199. Birnboim HC. DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate.Science. 1982;215:1247–1249.

    Article  PubMed  CAS  Google Scholar 

  200. Weitberg AB, Weitzman SA, Destrempes M, Latt SA, Stossel T. Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells.N Engl J Med. 1983;308:26–30.

    Article  PubMed  CAS  Google Scholar 

  201. Farzaneh F, Zalin R, Brill D, Shall S. DNA strand breaks and ADP- ribosyl transferase activation during cell differentiation.Nature. 1982;300:362–366.

    Article  PubMed  CAS  Google Scholar 

  202. Soddu S, Blandino G, Scargigli R, et al. Interference with p53 protein inhibits hematopoietic and muscle differentiation.J Cell Biol. 1996;134:193–204.

    Article  PubMed  CAS  Google Scholar 

  203. Feinstein E, Gale RP, Reed J, Canaani E. Expression of the normal p53 gene induces differentiation of K562 cells.Oncogene. 1992;7:1853–1857.

    PubMed  CAS  Google Scholar 

  204. Hoeijmakers JHJ, Egly JM, Vermeulen W. TFIIH: a key component in multiple DNA transactions.Curr Opin Genet Dev. 1996;6:26–33.

    Article  PubMed  CAS  Google Scholar 

  205. Canitrot Y, Lautier D, Laurent G, et al. Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta.Oncogene. 1999;18:2676–2680.

    Article  PubMed  CAS  Google Scholar 

  206. Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea.Blood. 1993;82:398–407.

    PubMed  CAS  Google Scholar 

  207. Era T, Witte ON. Regulated expression of P210BCR-ABL during embryonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate.Proc Natl Acad Sci U S A. 2000;97:1737–1742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors.Cell. 1993;74:823–832.

    Article  PubMed  CAS  Google Scholar 

  209. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology.Cell. 1997;88:287–298.

    Article  PubMed  CAS  Google Scholar 

  210. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia.Proc Natl Acad Sci U S A. 1999;96:12804–12809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiro Maru.

About this article

Cite this article

Maru, Y. Molecular Biology of Chronic Myeloid Leukemia. Int J Hematol 73, 308–322 (2001). https://doi.org/10.1007/BF02981955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981955

Key words

Navigation