Skip to main content
Log in

Negative Regulators of Cytokine Signaling

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The interaction of a cytokine with its specific cell surface receptor triggers the activation of intracellular signaling pathways that ultimately program the cellular response. Although the specific components and actions of the pathways driving these responses, such as the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway, are relatively well defined, it is becoming clear that important mechanisms exist to restrain these signaling cascades.This review discusses the key biochemical actions and biological roles of the phosphatase SHP-1, the protein inhibitors of activated STATs (PIAS) and the suppressor of cytokine signaling (SOCS) protein family in the negative regulation of cytokine signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shultz LD, Rajan TV, Greiner DL. Severe defects in immunity and hematopoiesis caused by SHP-1 proteintyrosine-phosphatase deficiency.Trends Biotechnol. 1997;15:302–307.

    Article  CAS  PubMed  Google Scholar 

  2. Matthews RJ, Bowne DB, Flores E, Thomas ML. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threoninerich sequences.Mol Cell Biol. 1992;12:2396–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13- dependent signal transduction.J Biol Chem. 1998;273:33893–33896.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss A, Schlessinger J. Switching signals on or off by receptor dimerization.Cell. 1998;94:277–280.

    Article  CAS  PubMed  Google Scholar 

  5. Migone TS, Cacalano NA, Taylor N, Yi T, Waldmann TA, Johnston JA. Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T- lymphotropic virus type I-transformed T cells.Proc Natl Acad Sci U S A. 1998;95:3845–3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T. Direct association with and dephosphorylation of Jak2 kinase by the SH2- domain-containing protein tyrosine phosphatase SHP-1.Mol Cell Biol. 1996;16:6985–6992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. David M, Chen HE, Goelz S, Larner AC, Neel BG. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1.Mol Cell Biol. 1995;15:7050–7058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paulson RF, Vesely S, Siminovitch KA, Bernstein A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1.Nat Genet. 1996;13:309–315.

    Article  CAS  PubMed  Google Scholar 

  9. Chen HE, Chang S, Trub T, Neel BG. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1.Mol Cell Biol. 1996;16:3685–3697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plas DR, Johnson R, Pingel JT, et al. Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling.Science. 1996;272:1173–1176.

    Article  CAS  PubMed  Google Scholar 

  11. Lorenz U, Ravichandran KS, Burakoff SJ, Neel BG. Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness.Proc Natl Acad Sci U S A. 1996;93:9624–9629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bignon JS, Siminovitch KA. Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function.Clin Immunol Immunopathol. 1994;73:168–179.

    Article  CAS  PubMed  Google Scholar 

  13. Green MC, Shultz LD. Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology.J Hered. 1975;66:250–258.

    Article  CAS  PubMed  Google Scholar 

  14. Jiao H, Yang W, Berrada K, Tabrizi M, Shultz L, Yi T. Macrophages from motheaten and viable motheaten mutant mice show increased proliferative responses to GM-CSF: detection of potential HCP substrates in GM-CSF signal transduction.Exp Hematol. 1997;25:592–600.

    PubMed  CAS  Google Scholar 

  15. Yetter A, Uddin S, Krolewski JJ, Jiao H,Yi T, Platanias LC. Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase.J Biol Chem. 1995;270:18179–18182.

    Article  CAS  PubMed  Google Scholar 

  16. Liu B, Liao J, Rao X, et al. Inhibition of Stat1-mediated gene activation by PIAS1.Proc Natl Acad Sci U S A. 1998;95:10626–10631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung CD, Liao J, Liu B, et al. Specific inhibition of Stat3 signal transduction by PIAS3.Science. 1997;278:1803–1805.

    Article  CAS  PubMed  Google Scholar 

  18. Starr R, Willson TA, Viney EM, et al. A family of cytokineinducible inhibitors of signalling.Nature. 1997;387:917–921.

    Article  CAS  PubMed  Google Scholar 

  19. Endo TA, Masuhara M, Yokouchi M, et al. A new protein containing an SH2 domain that inhibits JAK kinases.Nature. 1997;387:921–924.

    Article  CAS  PubMed  Google Scholar 

  20. Naka T, Narazaki M, Hirata M, et al. Structure and function of a new STAT-induced STAT inhibitor.Nature. 1997;387:924–929.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimura A, Ohkubo T, Kiguchi T, et al. A novel cytokineinducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors.EMBO J. 1995;14:2816–2826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Masuhara M, Sakamoto H, Matsumoto A, et al. Cloning and characterization of novel CIS family genes.Biochem Biophys Res Commun. 1997;239:439–446.

    Article  CAS  PubMed  Google Scholar 

  23. Hilton DJ, Richardson RT, Alexander WS, et al. Twenty proteins containing a C-terminal SOCS box form five structural classes.Proc Natl Acad Sci U S A. 1998;95:114–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kile BT, Viney EM, Willson TA, et al. Cloning and characterisation of the genes encoding the ankyrin repeat and SOCS box-containing proteins Asb-1, Asb-2, Asb-3 and Asb-4.Gene. (In press).

  25. Krebs DL, Hilton DJ. SOCS: physiological suppressors of cytokine signaling.J Cell Sci. 2000;113:2813–2819.

    PubMed  CAS  Google Scholar 

  26. Matsumoto A, Masuhara M, Mitsui K, et al. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation.Blood. 1997;89:3148–3154.

    PubMed  CAS  Google Scholar 

  27. Verdier F, Chretien S, Muller O, et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein.J Biol Chem. 1998;273:28185–28190.

    Article  CAS  PubMed  Google Scholar 

  28. Gobert S, Chretien S, Gouilleux F, et al. Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation.EMBO J. 1996;15:2434–2441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Klingmuller U, Bergelson S, Hsiao JG, Lodish HF. Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5.Proc Natl Acad Sci U S A. 1996;93:8324–8328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nicholson SE, Willson TA, Farley A, et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction.EMBO J. 1999;18:375–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yasukawa H, Misawa H, Sakamoto H, et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop.EMBO J. 1999;18:1309–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki A, Yasukawa H, Suzuki A, et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS-3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain.Genes Cells. 1999;4:339–351.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholson SE, De Souza D, Fabri LJ, et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2 binding site on the shared cytokine receptor subunit gp130.Proc Natl Acad Sci U S A. 2000;97:6493–6498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2.J Biol Chem. 2000;275:29338–29347.

    Article  CAS  PubMed  Google Scholar 

  35. Bjorbaek C, Lavery HJ, Bates SH, et al. SOCS-3 mediates feedback inhibition of the leptin receptor via Tyr985.J Biol Chem. 2000 (In press).

  36. Hansen JA, Lindberg K, Hilton DJ, Nielsen JH, Billestrup N. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins.Mol Endocrinol. 1999;13:1832–1843.

    Article  CAS  PubMed  Google Scholar 

  37. Kamura T, Sato S, Haque D, et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families.Genes Dev. 1998;12:3872–3881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang JG, Farley A, Nicholson SE, et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation.Proc Natl Acad Sci U S A. 1999;96:2071–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C.Science. 1995;269:1444–1446.

    Article  CAS  PubMed  Google Scholar 

  40. Kamura T, Koepp DM, Conrad MN, et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase.Science. 1999;284:657–661.

    Article  CAS  PubMed  Google Scholar 

  41. Lonergan KM, Iliopoulos O, Ohh M, et al. Regulation of hypoxiainducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2.Mol Cell Biol. 1998;18:732–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pause A, Lee S, Worrell RA, et al. The von Hippel-Lindau tumorsuppressor gene product forms a stable complex with human CUL- 2, a member of the Cdc53 family of proteins.Proc Natl Acad Sci U S A. 1997;94:2156–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai C, Sen P, Hofmann K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box.Cell. 1996;86:263–274.

    Article  CAS  PubMed  Google Scholar 

  44. Bousquet C, Susini C, Melmed S. Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor.J Clin Invest. 1999;104:1277–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu CL, Burakoff SJ. Involvement of proteasomes in regulating Jak- STAT pathways upon interleukin-2 stimulation.J Biol Chem. 1997;272:14017–14020.

    Article  CAS  PubMed  Google Scholar 

  46. Narazaki M, Fujimoto M, Matsumoto T, et al. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling.Proc Natl Acad Sci U S A. 1998;95:13130–13134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsumoto A, Seki Y, Kubo M, et al. Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice.Mol Cell Biol. 1999;19:6396–6407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Udy GB, Towers RP, Snell RG, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression.Proc Natl Acad Sci U S A. 1997;94:7239–7244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis.Genes Dev. 1997;11:179–186.

    Article  CAS  PubMed  Google Scholar 

  50. Marine JC, McKay C, Wang D, et al. SOCS-3 is essential in the regulation of fetal liver erythropoiesis.Cell. 1999;98:617–627.

    Article  CAS  PubMed  Google Scholar 

  51. Metcalf D, Greenhalgh CJ, Viney E, et al. Gigantism in mice lacking suppressor of cytokine signalling-2.Nature. 2000;405:1069–1073.

    Article  CAS  PubMed  Google Scholar 

  52. Marine JC, Topham DJ, McKay C, et al. SOCS-1 deficiency causes a lymphocyte-dependent perinatal lethality.Cell. 1999;98:609–616.

    Article  CAS  PubMed  Google Scholar 

  53. Naka T, Matsumoto T, Narazaki M, et al. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT- induced STAT inhibitor-1) deficient mice.Proc Natl Acad Sci U S A. 1998;95:15577–15582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Starr R, Metcalf D, Elefanty AG, et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1.Proc Natl Acad Sci U S A. 1998;95:14395–14399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morita Y, Naka T, Kawazoe Y, et al. Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/ suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts.Proc Natl Acad Sci U S A. 2000;97:5405–5410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alexander WS, Starr R, Fenner JE, et al. SOCS-1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine.Cell. 1999;98:597–608.

    Article  CAS  PubMed  Google Scholar 

  57. Wang Q, Miyakawa Y, Fox N, Kaushansky K. Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietininduced signaling through induction of SOCS-1.Blood. 2000;96:2093–2099.

    PubMed  CAS  Google Scholar 

  58. Shen X, Hong F, Nguyen V-A, Gao B. IL-10 attenuates IFN-α-activated STAT1 in the liver: involvement of SOCS-2 and SOCS-3.FEBS Lett. 2000;480:132–136.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin T. Kile.

About this article

Cite this article

Kile, B.T., Nicola, N.A. & Alexander, W.S. Negative Regulators of Cytokine Signaling. Int J Hematol 73, 292–298 (2001). https://doi.org/10.1007/BF02981953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981953

Key words

Navigation