Advertisement

International Journal of Hematology

, Volume 73, Issue 2, pp 170–176 | Cite as

The Pathogenesis of Chronic Myeloproliferative Diseases

  • Ayalew Tefferi
Review Article

Abstract

Chronic myeloproliferative disorders are operationally classified to include essential thrombocythemia, polycythemia vera, and agnogenic myeloid metaplasia. In most cases, clonal hematopoiesis, involving all 3 myeloid lineages, can be demonstrated. However, the underlying molecular lesions that are responsible for disease initiation and progression remain elusive. There are ongoing efforts to clarify the pathogenetic role of cytokines, bone marrow stromal cells and molecules, and intracellular aberrations in either signal transduction or apoptosis. This review discusses some of the current and past observations regarding the pathogenesis of chronic myeloproliferative disorders.

Key words

Chronic myeloproliferative disease Essential thrombocythemia Polycythemia vera Agnogenic myeloid metaplasia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tefferi A. The Philadelphia chromosome negative chronic myeloproliferative disorders: a practical overview.Mayo Clin Proc. 1998;73:1177–1184.PubMedCrossRefGoogle Scholar
  2. 2.
    Neuwirtova R, Mocikova K, Musilova J, et al. Mixed myelodysplastic and myeloproliferative syndromes.Leuk Res. 1996;20:717–726.PubMedCrossRefGoogle Scholar
  3. 3.
    Tefferi A, Solberg LA Jr, Silverstein MN. A clinical update in polycythemia vera and essential thrombocythemia.Am J Med. 2000;109:141–149.PubMedCrossRefGoogle Scholar
  4. 4.
    Tefferi A. Myelofibrosis with myeloid metaplasia.N Engl J Med. 2000;342:1255–1265.PubMedCrossRefGoogle Scholar
  5. 5.
    Raskind WH, Fialkow PJ. The use of cell markers in the study of human hematopoietic neoplasia.Adv Cancer Res. 1987;49:127–167.PubMedCrossRefGoogle Scholar
  6. 6.
    Tefferi A, Thibodeau SN, Solberg LA Jr. Clonal studies in the myelodysplastic syndrome using X-linked restriction fragment length polymorphisms.Blood. 1990;75:1770–1773.PubMedGoogle Scholar
  7. 7.
    Heimpel H. The present state of pathophysiology and therapeutic trials in polycythemia vera.Int J Hematol. 1996;64:153–165.PubMedCrossRefGoogle Scholar
  8. 8.
    Harrison CN, Gale RE, Machin SJ, Linch DC. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at a lower risk of thrombotic complications.Blood. 1999;93:417–424.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mitterbauer G, Winkler K, Gisslinger H, Geissler K, Lechner K, Mannhalter C. Clonality analysis using X-chromosome inactivation at the human androgen receptor gene (Humara): evaluation of large cohorts of patients with chronic myeloproliferative diseases, secondary neutrophilia, and reactive thrombocytosis.Am J Clin Pathol. 1999;112:93–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Fialkow PJ, Singer JW, Raskind WH, et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia.N Engl J Med. 1987;317:468–473.PubMedCrossRefGoogle Scholar
  11. 11.
    Champion KM, Gilbert JG, Asimakopoulos FA, Hinshelwood S, Green AR. Clonal haemopoiesis in normal elderly women: implications for the myeloproliferative disorders and myelodysplastic syndromes.Br J Haematol. 1997;97:920–926.PubMedCrossRefGoogle Scholar
  12. 12.
    Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis.Blood. 1978;51:189–194.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kreipe H, Jaquet K, Felgner J, Radzun HJ, Parwaresch MR. Clonal granulocytes and bone marrow cells in the cellular phase of agnogenic myeloid metaplasia.Blood. 1991;78:1814–1817.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsukamoto N, Morita K, Maehara T, et al. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement.Br J Haematol. 1994;86:253–258.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugiyama H, Ichiba S, Okuno Y, et al. Cytogenetic evidence for a clonal disorder involving CFU-GEMM, BFU-E and CFU-C in patients with myeloproliferative disorders.Nippon Ketsueki Gakkai Zasshi. 1989;52:1022–1032.PubMedGoogle Scholar
  16. 16.
    Ruutu T, Partanen S, Knuutila S. Clonal karyotype abnormalities in erythroid and granulocyte-monocyte precursors in polycythaemia vera and myelofibrosis.Scand J Haematol. 1983;31:253–256.PubMedCrossRefGoogle Scholar
  17. 17.
    Buschle M, Janssen JW, Drexler H, Lyons J, Anger B, Bartram CR. Evidence for pluripotent stem cell origin of idiopathic myelofibrosis: clonal analysis of a case characterized by a N-ras gene mutation.Leukemia. 1988;2:658–660.PubMedGoogle Scholar
  18. 18.
    Biagini G, Severi B, Govoni E, et al. Stromal cells in primary myelofibrosis: ultrastructural observations.Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;48:1–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Hotta T, Utsumi M, Katoh T, Maeda H, Yamao H, Yamada H. Granulocytic and stromal progenitors in the bone marrow of patients with primary myelofibrosis.Scand J Haematol. 1985;34:251–255.PubMedCrossRefGoogle Scholar
  20. 20.
    Thiele J, Braeckel C, Wagner S, et al. Macrophages in normal human bone marrow and in chronic myeloproliferative disorders: an immunohistochemical and morphometric study by a new monoclonal antibody (PG-M1) on trephine biopsies.Virchows Arch A Pathol Anat Histopathol. 1992;421:33–39.PubMedCrossRefGoogle Scholar
  21. 21.
    Charron D, Robert L, Couty MC, Binet JL. Biochemical and histological analysis of bone marrow collagen in myelofibrosis.Br J Haematol. 1979;41:151–161.PubMedCrossRefGoogle Scholar
  22. 22.
    Reilly JT, Nash JR. Vitronectin (serum spreading factor): its localisation in normal and fibrotic tissue.J Clin Pathol. 1988;41:1269–1272.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Reilly JT, Brindley L, Kay M, et al. Bone marrow and serum connective tissue polypeptides in idiopathic myelofibrosis.Clin Lab Haematol. 1995;17:35–39.PubMedCrossRefGoogle Scholar
  24. 24.
    Apaja-Sarkkinen M, Autio-Harmainen H, Alavaikko M, Risteli J, Risteli L. Immunohistochemical study of basement membrane proteins and type III procollagen in myelofibrosis.Br J Haematol. 1986;63:571–580.PubMedCrossRefGoogle Scholar
  25. 25.
    Soini Y, Kamel D, Apaja-Sarkkinen M, Virtanen I, Lehto VP. Tenascin immunoreactivity in normal and pathological bone marrow.J Clin Pathol. 1993;46:218–221.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia.Blood. 2000;96:3374–3380.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Thiele J, Rompcik V, Wagner S, Fischer R. Vascular architecture and collagen type IV in primary myelofibrosis and polycythaemia vera: an immunomorphometric study on trephine biopsies of the bone marrow.Br J Haematol. 1992;80:227–234.PubMedCrossRefGoogle Scholar
  28. 28.
    Reilly JT, Nash JR, Mackie MJ, McVerry BA. Endothelial cell proliferation in myelofibrosis.Br J Haematol. 1985;60:625–630.PubMedCrossRefGoogle Scholar
  29. 29.
    Baglin TP, Crocker J, Timmins A, Chandler S, Boughton BJ. Bone marrow hypervascularity in patients with myelofibrosis identified by infra-red thermography.Clin Lab Haematol. 1991;13:341–348.PubMedCrossRefGoogle Scholar
  30. 30.
    Burkhardt R, Bartl R, Beil E, et al. Myelofibrosis-osteosclerosis syndrome: review of literature and histomorphology. In: Burkhardt R, ed.Dahlem Workshop on Myelofibrosis-Osteosclerosis Syndrome. Braunschweig, Vieweg:Pergamon Press; 1975;16:9–56.Google Scholar
  31. 31.
    Johnston JB, Dalal BI, Israels SJ, et al. Deposition of transforming growth factor-beta in the marrow in myelofibrosis, and the intracellular localization and secretion of TGF-beta by leukemic cells.Am J Clin Pathol. 1995;103:574–582.PubMedCrossRefGoogle Scholar
  32. 32.
    Martyre MC, Le Bousse-Kerdiles MC, Romquin N, et al. Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis.Br J Haematol. 1997;97:441–448.PubMedCrossRefGoogle Scholar
  33. 33.
    Katoh O, Kimura A, Itoh T, Kuramoto A. Platelet derived growth factor messenger RNA is increased in bone marrow megakaryocytes in patients with myeloproliferative disorders.Am J Hematol. 1990;35:145–150.PubMedCrossRefGoogle Scholar
  34. 34.
    Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME. A recombinant human TGF-beta1 fusion protein with collagenbinding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells.Exp Cell Res. 1999;250:485–498.CrossRefPubMedGoogle Scholar
  35. 35.
    Long MW, Robinson JA, Ashcraft EA, Mann KG. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors.J Clin Invest. 1995;95:881–887.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wang JC, Lang HD, Lichter S, Weinstein M, Benn P. Cytogenetic studies of bone marrow fibroblasts cultured from patients with myelofibrosis and myeloid metaplasia.Br J Haematol. 1992;80:184–188.CrossRefPubMedGoogle Scholar
  37. 37.
    Greenberg BR, Woo L, Veomett IC, Payne CM, Ahmann FR. Cytogenetics of bone marrow fibroblastic cells in idiopathic chronic myelofibrosis.Br J Haematol. 1987;66:487–490.CrossRefPubMedGoogle Scholar
  38. 38.
    Castro-Malaspina H, Gay RE, Jhanwar SC, et al. Characteristics of bone marrow fibroblast colony-forming cells (CFU-F) and their progeny in patients with myeloproliferative disorders.Blood. 1982;59:1046–1054.PubMedGoogle Scholar
  39. 39.
    Castro-Malaspina H, Rabellino EM, Yen A, Nachman RL, Moore MA. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts.Blood. 1981;57:781–787.PubMedGoogle Scholar
  40. 40.
    Martyre MC, Romquin N, Le Bousse-Kerdiles MC, et al. Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis.Br J Haematol. 1994;88:9–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Terui T, Niitsu Y, Mahara K, et al. The production of transforming growth factor-beta in acute megakaryoblastic leukemia and its possible implications in myelofibrosis.Blood. 1990;75:1540–1548.PubMedGoogle Scholar
  42. 42.
    Murate T, Yamashita K, Isogai C, et al. The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis.Br J Haematol. 1997;99:181–189.PubMedCrossRefGoogle Scholar
  43. 43.
    Rameshwar P, Denny TN, Stein D, Gascon P. Monocyte adhesion in patients with bone marrow fibrosis is required for the production of fibrogenic cytokines: potential role for interleukin-1 and TGF-beta.J Immunol. 1994;153:2819–2830.PubMedGoogle Scholar
  44. 44.
    Kimura A, Katoh O, Hyodo H, Kuramoto A. Transforming growth factor-beta regulates growth as well as collagen and fibronectin synthesis of human marrow fibroblasts.Br J Haematol. 1989;72:486–491.PubMedCrossRefGoogle Scholar
  45. 45.
    Dalley A, Smith JM, Reilly JT, Neil SM. Investigation of calmodulin and basic fibroblast growth factor (bFGF) in idiopathic myelofibrosis: evidence for a role of extracellular calmodulin in fibroblast proliferation.Br J Haematol. 1996;93:856–862.PubMedCrossRefGoogle Scholar
  46. 46.
    Mohle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets.Proc Natl Acad Sci U S A. 1997;94:663–668.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Avraham H, Banu N, Scadden DT, Abraham J, Groopman JE. Modulation of megakaryocytopoiesis by human basic fibroblast growth factor.Blood. 1994;83:2126–2132.PubMedGoogle Scholar
  48. 48.
    Bruno E, Cooper RJ, Wilson EL, Gabrilove JL, Hoffman R. Basic fibroblast growth factor promotes the proliferation of human megakaryocyte progenitor cells.Blood. 1993;82:430–435.PubMedGoogle Scholar
  49. 49.
    Jouan V, Canron X, Alemany M, et al. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action.Blood. 1999;94:984–993.PubMedGoogle Scholar
  50. 50.
    Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors.Blood. 1995;85:989–996.PubMedGoogle Scholar
  51. 51.
    Akahane K, Hosoi T, Urabe A, Kawakami M, Takaku F. Effects of recombinant human tumor necrosis factor (rhTNF) on normal human and mouse hemopoietic progenitor cells.Int J Cell Cloning. 1987;5:16–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Werb Z, Vu TH, Rinkenberger JL, Coussens LM. Matrix-degrading proteases and angiogenesis during development and tumor formation.APMIS. 1999;107:11–18.PubMedCrossRefGoogle Scholar
  53. 53.
    Schmitz B, Thiele J, Otto F, et al. Evidence for integrin receptor involvement in megakaryocyte-fibroblast interaction: a possible pathomechanism for the evolution of myelofibrosis.J Cell Physiol. 1998;176:445–455.PubMedCrossRefGoogle Scholar
  54. 53a.
    Yoon S-Y, Li C-Y, Lloyd RV, Tefferi A. Bone marrow histochemical studies of fibrogenic cytokines and their receptors in myelodysplastic syndrome with myelofibrosis and related disorders.Int J Hematol. 2000;72:337–342.PubMedGoogle Scholar
  55. 54.
    Yoon SY, Tefferi A, Li CY. Bone marrow stromal cell distribution of basic fibroblast growth factor in chronic myeloid disorders.Haematologica. 2001;86:52–57.PubMedGoogle Scholar
  56. 55.
    Katoh O, Kimura A, Kuramoto A. Platelet-derived growth factor is decreased in patients with myeloproliferative disorders.Am J Hematol. 1988;27:276–280.PubMedCrossRefGoogle Scholar
  57. 56.
    Martyre MC, Magdelenat H, Bryckaert MC, Laine-Bidron C, Calvo F. Increased intraplatelet levels of platelet-derived growth factor and transforming growth factor-beta in patients with myelofibrosis with myeloid metaplasia.Br J Haematol. 1991;77:80–86.PubMedCrossRefGoogle Scholar
  58. 57.
    Caenazzo A, Pietrogrande F, Polato G, et al. Changes in the mitogenic activity of platelet-derived growth factor(s) in patients with myeloproliferative disease.Acta Haematol. 1989;81:131–135.PubMedCrossRefGoogle Scholar
  59. 58.
    Zauli G, Visani G, Catani L, Vianelli N, Gugliotta L, Capitani S. Reduced responsiveness of bone marrow megakaryocyte progenitors to platelet-derived transforming growth factor beta 1, produced in normal amount, in patients with essential thrombocythaemia.Br J Haematol. 1993;83:14–20.PubMedCrossRefGoogle Scholar
  60. 59.
    Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice.Blood. 1997;90:4369–4383.PubMedGoogle Scholar
  61. 60.
    Yan XQ, Lacey D, Hill D, et al. A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation.Blood. 1996;88:402–409.PubMedPubMedCentralGoogle Scholar
  62. 61.
    Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats.Br J Haematol. 1997;99:739–745.PubMedCrossRefGoogle Scholar
  63. 62.
    Taksin AL, Couedic JPL, Dusanter-Fourt I, et al. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L.Blood. 1999;93:125–139.PubMedGoogle Scholar
  64. 63.
    Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera.N Engl J Med. 1998;338:572–580.PubMedCrossRefGoogle Scholar
  65. 64.
    Horikawa Y, Matsumura I, Hashimoto K, et al. Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia.Blood. 1997;90:4031–4038.PubMedGoogle Scholar
  66. 65.
    Tamura H, Ogata K, Luo S, et al. Plasma thrombopoietin (TPO) levels and expression of TPO receptor on platelets in patients with myelodysplastic syndromes.Br J Haematol. 1998;103:778–784.PubMedCrossRefGoogle Scholar
  67. 66.
    Tefferi A, Yoon S-Y, Li C-Y. Immunohistochemical staining for megakaryocyt.c-mpl may complement morphologic distinction between polycythemia vera and secondary erythrocytosis.Blood. 2000;96:771–772.PubMedGoogle Scholar
  68. 67.
    Cardier JE, Dempsey J. Thrombopoietin and its receptor, c-mpl, are constitutively expressed by mouse liver endothelial cells: evidence of thrombopoietin as a growth factor for liver endothelial cells.Blood. 1998;91:923–929.PubMedGoogle Scholar
  69. 68.
    Brizzi MF, Battaglia E, Montrucchio G, et al. Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism.Circ Res. 1999;84:785–796.PubMedCrossRefGoogle Scholar
  70. 69.
    Wang JC, Chen C, Lou LH, Mora M. Blood thrombopoietin, IL-6 and IL-11 levels in patients with agnogenic myeloid metaplasia.Leukemia. 1997;11:1827–1832.PubMedCrossRefGoogle Scholar
  71. 70.
    Fielder PJ, Hass P, Nagel M, et al. Human platelets as a model for the binding and degradation of thrombopoietin.Blood. 1997;89:2782–2788.PubMedGoogle Scholar
  72. 71.
    Sakamaki S, Hirayama Y, Matsunaga T, et al. Transforming growth factor-beta1 (TGF-beta1) induces thrombopoietin from bone marrow stromal cells, which stimulates the expression of TGF-beta receptor on megakaryocytes and, in turn, renders them susceptible to suppression by TGF-beta itself with high specificity.Blood. 1999;94:1961–1970.PubMedGoogle Scholar
  73. 72.
    Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease.N Engl J Med. 1976;295:913–916.PubMedCrossRefGoogle Scholar
  74. 73.
    Prchal JT, Guan YL. A novel clonality assay based on transcriptional analysis of the active X chromosome.Stem Cells. 1993;11(suppl 1):62–65.PubMedCrossRefGoogle Scholar
  75. 74.
    Raskind WH, Steinmann L, Najfeld V. Clonal development of myeloproliferative disorders: clues to hematopoietic differentiation and multistep pathogenesis of cancer.Leukemia. 1998;12:108–116.PubMedCrossRefGoogle Scholar
  76. 75.
    Raskind WH, Jacobson R, Murphy S, Adamson JW, Fialkow PJ. Evidence for the involvement of B lymphoid cells in polycythemia vera and essential thrombocythemia.J Clin Invest. 1985;75:1388–1390.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 76.
    Kralovics R, Prchal JT. Haematopoietic progenitors and signal transduction in polycythaemia vera and primary thrombocythaemia.Baillieres Clin Haematol. 1998;11:803–818.PubMedCrossRefGoogle Scholar
  78. 77.
    Powell JS, Fialkow PJ, Adamson JW. Human mixed cell colonies: unicellular or multicellular origin—analysis by G-6-PD.Br J Haematol. 1984;57:89–95.PubMedCrossRefGoogle Scholar
  79. 78.
    Gilliland DG, Blanchard KL, Levy J, Perrin S, Bunn HF. Clonality in myeloproliferative disorders: analysis by means of the polymerase chain reaction.Proc Natl Acad Sci U S A. 1991;88:6848–6852.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 79.
    Asimakopoulos FA, Gilbert JGR, Aldred MA, Pearson TC, Green AR. Interstitial deletion constitutes the major mechanism for loss of heterozygosity on chromosome 20q in polycythemia vera.Blood. 1996;88:2690–2698.PubMedGoogle Scholar
  81. 80.
    Prchal JF, Axelrad AA. Bone-marrow responses in polycythemia vera [letter].N Engl J Med. 1974;290:1382.PubMedGoogle Scholar
  82. 81.
    Zanjani ED, Lutton JD, Hoffman R, Wasserman LR. Erythroid colony formation by polycythemia vera bone marrow in vitro: dependence on erythropoietin.J Clin Invest. 1977;59:841–848.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 82.
    Fisher MJ, Prchal JF, Prchal JT, D’Andrea AD. Anti-erythropoietin (EPO) receptor monoclonal antibodies distinguish EPO-dependent and EPO-independent erythroid progenitors in polycythemia vera.Blood. 1994;84:1982–1991.PubMedGoogle Scholar
  84. 83.
    Hess G, Rose P, Gamm H, Papadileris S, Huber C, Seliger B. Molecular analysis of the erythropoietin receptor system in patients with polycythaemia vera.Br J Haematol. 1994;88:794–802.PubMedCrossRefGoogle Scholar
  85. 84.
    Asimakopoulos FA, Hinshelwood S, Gilbert JG, et al. The gene encoding hematopoietic cell phosphatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera.Oncogene. 1997;14:1215–1222.PubMedCrossRefGoogle Scholar
  86. 85.
    Casadevall N, Vainchenker W, Lacombe C, et al. Erythroid progenitors in polycythemia vera: demonstration of their hypersensitivity to erythropoietin using serum free cultures.Blood. 1982;59:447–451.PubMedGoogle Scholar
  87. 86.
    Correa PN, Eskinazi D, Axelrad AA. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium.Blood. 1994;83:99–112.PubMedGoogle Scholar
  88. 87.
    Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera.N Engl J Med. 1998;338:564–571.PubMedCrossRefGoogle Scholar
  89. 88.
    Mirza AM, Correa PN, Axelrad AA. Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera.Blood. 1995;86:877–882.PubMedGoogle Scholar
  90. 89.
    Hinshelwood S, Bench AJ, Green AR. Pathogenesis of polycythaemia vera.Blood Rev. 1997;11:224–232.PubMedCrossRefGoogle Scholar
  91. 90.
    Mirza AM, Ezzat S, Axelrad AA. Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro.Blood. 1997;89:1862–1869.PubMedGoogle Scholar
  92. 91.
    Sui X, Krantz SB, Zhao Z. Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells.Blood. 1997;90:651–657.PubMedGoogle Scholar
  93. 92.
    Dai CH, Krantz SB, Sawyer ST. Polycythemia vera, V: enhanced proliferation and phosphorylation due to vanadate are diminished in polycythemia vera erythroid progenitor cells: a possible defect of phosphatase activity in polycythemia vera.Blood. 1997;89:3574–3581.PubMedGoogle Scholar
  94. 93.
    Moliterno AR, Spivak JL. Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera.Blood. 1999;94:2555–2561.PubMedGoogle Scholar
  95. 94.
    Yoon S-Y, Li C-Y, Tefferi A. Megakaryocyte c-Mpl expression in chronic myeloproliferative disorders and the myelodysplastic syndrome: immunoperoxidase staining patterns and clinical correlates.Eur J Haematol. 2000;64:1–5.CrossRefGoogle Scholar
  96. 95.
    Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell.Blood. 1981;58:916–919.PubMedGoogle Scholar
  97. 96.
    el-Kassar N, Hetet G, Briere J, Grandchamp B. Clonality analysis of hematopoiesis in essential thrombocythemia: advantages of studying T lymphocytes and platelets.Blood. 1997;89:128–134.PubMedGoogle Scholar
  98. 97.
    Janssen JW, Anger BR, Drexler HG, Bartram CR, Heimpel H. Essential thrombocythemia in two sisters originating from different stem cell levels.Blood. 1990;75:1633–1636.PubMedGoogle Scholar
  99. 98.
    Gale RE, Fielding AK, Harrison CN, Linch DC. Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age.Br J Haematol. 1997;98:512–519.PubMedCrossRefGoogle Scholar
  100. 99.
    Chiusolo P, Sica S, Ortu La Barbera E, et al. Patients with essential thrombocythemia and clonal hemopoiesis detected by X-inactivation pattern are at high risk for thrombotic complication [abstract].Blood. 1999;94(suppl 1):700a.Google Scholar
  101. 100.
    Hou M, Andersson PO, Stockelberg D, Mellqvist UH, Ridell B, Wadenvik H. Plasma thrombopoietin levels in thrombocytopenic states: implication for a regulatory role of bone marrow megakaryocytes.Br J Haematol. 1998;101:420–424.PubMedCrossRefGoogle Scholar
  102. 101.
    Wang JC, Chen C, Novetsky AD, Lichter SM, Ahmed F, Friedberg NM. Blood thrombopoietin levels in clonal thrombocytosis and reactive thrombocytosis.Am J Med. 1998;104:451–455.PubMedCrossRefGoogle Scholar
  103. 102.
    Espanol I, Hernandez A, Cortes M, Mateo J, Pujol-Moix N. Patients with thrombocytosis have normal or slightly elevated thrombopoietin levels.Haematologica. 1999;84:312–316.PubMedGoogle Scholar
  104. 103.
    Stoffel R, Wiestner A, Skoda RC. Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets.Blood. 1996;87:567–573.PubMedGoogle Scholar
  105. 104.
    Wiestner A, Schlemper RJ, Van der Maas AP, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia.Nat Genet. 1998;18:49–52.PubMedCrossRefGoogle Scholar
  106. 105.
    Kiladjian JJ, Elkassar N, Hetet G, Briere J, Grandchamp B, Gardin C. Study of the thrombopoietin receptor in essential thrombocythemia.Leukemia. 1997;11:1821–1826.PubMedCrossRefGoogle Scholar
  107. 106.
    Harrison CN, Gale RE, Pezella F, Mire-Sluis A, MacHin SJ, Linch DC. Platelet c-mpl expression is dysregulated in patients with essential thrombocythaemia but this is not of diagnostic value.Br J Haematol. 1999;107:139–147.PubMedCrossRefGoogle Scholar
  108. 107.
    Juvonen E, Ikkala E, Oksanen K, Ruutu T. Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive thrombocytosis: diagnostic value and correlation to complications.Br J Haematol. 1993;83:192–197.PubMedCrossRefGoogle Scholar
  109. 108.
    Li Y, Hetet G, Maurer AM, Chait Y, Dhermy D, Briere J. Spontaneous megakaryocyte colony formation in myeloproliferative disorders is not neutralizable by antibodies against IL3, IL6 and GM-CSF.Br J Haematol. 1994;87:471–476.PubMedCrossRefGoogle Scholar
  110. 109.
    Kobayashi S, Teramura M, Hoshino S, Motoji T, Oshimi K, Mizoguchi H. Circulating megakaryocyte progenitors in myelopro- liferative disorders are hypersensitive to interleukin-3.Br J Haematol. 1993;83:539–544.PubMedCrossRefGoogle Scholar
  111. 110.
    Axelrad AA, Eskinazi D, Amato D. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia [abstract].Blood. 1998;92(suppl 1):488a.Google Scholar

Copyright information

© The Japanese Society of Hematology 2001

Authors and Affiliations

  1. 1.Division of Hematology and Internal MedicineMayo Clinic and Mayo FoundationRochester

Personalised recommendations