Skip to main content
Log in

Phenolic compounds in plant disease resistance

  • Review
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

We propose that an important first line in plant defense against infection is provided by the very rapid synthesis of phenolics and their polymerization in the cell wall. This rapid synthesis, which leaves no time forde novo enzyme synthesis, is regulated by the extreme pH-dependence of the hydroxylase, catalyzing the formation of caffeoyl-CoA from 4-coumaroyl-CoA. We further propose that elicitor treatment or infection causes rapid membrane changes leading to a decrease in cytoplasmic pH. This decrease would have the effect of activating the hydroxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aist, J.R. and Gold, R.E. (1987) Prevention of fungal ingress: the role of papillae and calcium,in: Nishimura, S., Vance, C.P. and Doke, N. [Eds.] Molecular Determinants of Plant Diseases. pp. 47–56. Japan Scientific Societies Press, Tokyo, and Springer- Verlag, Heidelberg.

    Google Scholar 

  2. Asada, Y. and Matsumoto, I. (1987) Induction of disease resistance in plants by a lignification-inducing factor,in: Nishimura, S., Vance, C.P. and Doke, N. [Eds.] Molecular Determinants of Plant Diseases, pp. 223–231. Japan Scientific Societies Press, Tokyo, and Springer-Verlag, Heidelberg.

    Google Scholar 

  3. Asada, Y., Ohguchi, T. and Matsumoto, I. (1979) Induction of lignification in response to fungal infection.in: Daly, J.M. and Uritani, I. [Eds.] Recognition and Specificity in Plant Host-Parasite Interactions. pp. 99–115. University Press, Tokyo.

    Google Scholar 

  4. Bailey, J.A. and Mansfield, J.W. [Eds.] (1982) Phytoalexins. Blackie, Glasgow.

    Google Scholar 

  5. Barber, M.S. and Ride, J.P. (1988) A quantitative assay for induced lignification in wounded wheat leaves and its use to survey potential elicitors of the response.Physiol. molec. Pl. Path. 32:185–197.

    Article  CAS  Google Scholar 

  6. Bell, A.A. (1980) The time sequence of defense.in: Horsfall, J.G. and Cowling, E.B. [Eds.] Plant Disease. An Advanced Treatise. Vol. 5: How plants defend themselves, pp. 53–73. Academic Press, New York, NY.

    Google Scholar 

  7. Bollwell, G.P., Robbins, M.P. and Dixon, R.A. (1985) Metabolic changes in elicitor-treated bean cells. Enzymic responses associated with rapid changes in cell wall components.Eur. J. Biochem. 148:571–578.

    Article  Google Scholar 

  8. Bonhoff, A., Rieth, B., Golecki, J. and Grisebach, H. (1987) Race:cultivar-specific differences in callose deposition in soybean roots following infection withPhyto-phthora megasperma f.sp.glycinea. Planta, Berl. 172:101–105.

    Google Scholar 

  9. Cadena-Gomez, G. and Nicholson, R.L. (1987) Papilla formation and associated peroxidase activity: A non-specific response to attempted fungal penetration of maize.Physiol. molec. Pl. Path. 31:51–67.

    Article  Google Scholar 

  10. Dean, R.A. and Kuc, J. (1987) Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber.Physiol. molec. Pl. Path. 31:69–81.

    Article  CAS  Google Scholar 

  11. Dische, Z. (1962) Colour reactions of pentoses.in: Whistler, R.L. and Wolfrom, M.L. [Eds.] Methods in Carbohydrate Chemistry. Vol. 1, pp. 484–488. Academic Press Inc., Orlando, FL.

    Google Scholar 

  12. Ecker, J.R. and Davis, R.W. (1987) Plant defense genes are regulated by ethylene.Proc.natn. Acad. Sci. U.S.A. 94:5202–5206.

    Article  Google Scholar 

  13. Farmer, E.E. (1985) Effects of fungal elicitor on lignin biosynthesis in cell suspension cultures of soybean.Pl. Physiol. 78:338–342.

    Article  CAS  Google Scholar 

  14. Friend, J. (1981) Plant phenolics, lignification and plant disease.in: Reinhold, L., Harborne, J.B. and Swain, T. [Eds.] Progress in Phytochemistry. Vol. 7, pp. 197–261. Pergamon Press, Oxford.

    Google Scholar 

  15. Friend, J. (1985) Phenolic substances and plant disease.in: Van Sumere, C.F. and Lea, P.J. [Eds.] The Biochemistry of Plant Phenolics. Ann. Proc. Phytochemistry Soc. of Europe. Vol. 25, pp. 367–392. Clarendon Press, Oxford.

    Google Scholar 

  16. Fritig, B. and Hirth, L. (1971) Biosynthesis of phenylpropanoids and coumarins in TMV-infected tobacco leaves and tobacco tissue cultures.Acta Phytopath. Acad. Sci. Hung. 6:21–29.

    CAS  Google Scholar 

  17. Fry, S.C. (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms.A. Rev. Pl. Physiol. 37:165–186.

    Article  CAS  Google Scholar 

  18. Fry, S.C. (1987) Intracellular feruloylation of pectic polysaccharides.Planta, Berl. 171:205–211.

    Article  CAS  Google Scholar 

  19. Fry, S.C. (1987) Formation of isodityrosine by peroxidase isozymes.J. exp. Bot. 38:853–862.

    Article  CAS  Google Scholar 

  20. Garrod, B., Lewis, B.G., Brittain, M.J. and Davies, W.P. (1982) Studies on the contribution of lignin and suberin to the impedance of wounded carrot root tissue to fungal invasion.New Phytol. 90:99–108.

    Article  Google Scholar 

  21. Grand, C. and Rossignol, M. (1982) Changes in the lignification process induced by localized infection of muskmelon withColletotrichum lagenarium.Pl. Sci. Lett. 28:103–110.

    CAS  Google Scholar 

  22. Grand, C, Sarni, F. and Lamb, C.J. (1987) Rapid induction by fungal elicitor of the synthesis of cinnamyl-alcohol dehydrogenase, a specific enzyme of lignin synthesis.Eur. J. Biochem. 169:73–77.

    Article  PubMed  CAS  Google Scholar 

  23. Grisebach, H. (1977) Biochemistry of lignification.Naturwissenschaften 64:619–625.

    Article  CAS  Google Scholar 

  24. Gross, G.G. (1979) Recent advances in the chemistry and biochemistry of lignin.in: Swain, T., Harborne, J.B. and Van Sumere, CF. [Eds.] Recent Advances in Phytochemistry. Vol. 12: Biochemistry of Plant Phenolics. pp. 177–220. Plenum Press, New York, NY.

    Google Scholar 

  25. Hächler, H. and Hohl, H.R. (1984) Temporal and spatial distribution patterns of collar and papillae wall appositions in resistant and susceptible tuber tissue ofSolarium tuberosum infected byPhytophthora infestons.Physiol. Pl. Path. 24:107–118.

    Article  Google Scholar 

  26. Hahlbrock, K., Cretin, C, Cuypers, B., Fritzemeier, K.-H., Hauffe, K.-D., Jahnen, W., Kombrink, E., Rohwer, F., Scheel, D., Schmelzer, E., Schroder, M. and Taylor, J. (1987) Tissue specificity and dynamics of disease resistance responses in plants.in: Wettstein, D.v. and Chua, N.-H. [Eds.] NATO ASI Series: Plant Molecular Biology. pp. 399–406. Plenum, New York, NY.

    Google Scholar 

  27. Hammerschmidt, R. (1984) Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato.Physiol. Pl. Path. 24:33–42.

    Article  CAS  Google Scholar 

  28. Heale, J.B. and Sharman, S. (1977) Induced resistance toBotrytis cinerea in root slices and tissue cultures of carrot(Daucus carota L.).Physiol. Pl. Path. 10:51–61.

    Article  Google Scholar 

  29. Heath, M.C. (1980) Reactions of nonsuscepts to fungal pathogens.A. Rev. Phytopath. 18:211–236.

    Article  CAS  Google Scholar 

  30. Heller, W. and Kühnl, T. (1985) Elicitor induction of a microsomal 5-O-(4-coumaroyl)- shikimate 3’-hydroxylase in parsley cell suspension cultures.Arch. Biochem. Biophys. 241:453–460.

    Article  PubMed  CAS  Google Scholar 

  31. Hermann, C, Legrand, M., Geoffroy, P. and Fritig, B. (1987) Enzymatic synthesis of lignin: purification to homogeneity of the three O-methyltransferases of tobacco and production of specific antibodies.Arch. Biochem. Biophys. 253:367–376.

    Article  PubMed  CAS  Google Scholar 

  32. Higuchi, T., Ito, Y. and Kawamura, I. (1967) p-Hydroxyphenylpropane component of grass lignin and role of tyrosine ammonia-lyase in its formation.Phytochemistry 6:875–881.

    Article  CAS  Google Scholar 

  33. Kauss, H. (1987) Some aspects of calcium-dependent regulation in plant metabolism.A. Rev. Pl. Physiol. 32:47–72.

    Article  Google Scholar 

  34. Keen, N.T. and Littlefield, L.J. (1979) The possible association of phytoalexins with resistant gene expression in flax toMelampsora lini.Physiol. Pl. Path. 14:265–280.

    Article  CAS  Google Scholar 

  35. Kneusel, R.E. (1987) Phenolische Verbindungen in der pflanzlichen Abwehr. Eine 4-Coumaroyl-CoA 3-Hydroxylase und eine S-Adenosyl: Kaffeeoyl-CoA 3-O-MethyJ- transferase in Zellsuspensionskulturen von Petersilie(Petroselinum crispum). Diplomarbeit, Universität Freiburg, Freiburg, F.R.G.

    Google Scholar 

  36. Kosugue, T. (1969) The role of phenolics in host response to infection.A. Rev. Phytopath. 7:195–222.

    Article  Google Scholar 

  37. Kühnl, T., Koch, U., Heller, W. and Wellmann, E. (1987) Chlorogenic acid biosynthesis. Characterization of a light induced microsomal 5-O-(4-coumaroyl)-D-quinate/shiki-mate 3-hydroxylase from carrot (Dancus carota L.) cell suspension cultures.Arch. Biochem. Biophys. 258:226–232.

    Article  PubMed  Google Scholar 

  38. Kurosaki, F., Tashiro, N. and Nishi, A. (1986) Induction of chitinase and phenylalanine ammonia-lyase in cultured carrot cells treated with fungal mycelial walls.Pl. Cell Physiol. 27:1587–1591.

    CAS  Google Scholar 

  39. Kurosaki, F., Tsurusawa, Y. and Nishi, A. (1987) The elicitation of phytoalexins by Ca2+ and cyclic AMP in carrot cells.Phytochemistry 26:1919–1923.

    Article  CAS  Google Scholar 

  40. Lamport, D.T.A. (1980) Structure and function of plant glycoproteins.in: Preiss, J. [Ed.] The Biochemistry of Plants, vol. 3, pp. 501–541. Academic Press, New York, NY.

    Google Scholar 

  41. Legrand, M. (1983) Phenylpropanoid metabolism and its regulation in disease,in: Callow, J.A. [Ed.] Biochemical Plant Pathology, pp. 367–384. John Wiley & Sons Ltd., Chichester, U.K.

    Google Scholar 

  42. Low, P.S. and Heinstein, P.F. (1986) Elicitor stimulation of the defense response in cultured plant cells monitored by fluorescent dyes.Arch. Biochem. Biophys. 249:472–479.

    Article  PubMed  CAS  Google Scholar 

  43. Martin, J.-B., Bligny, R., Rebeille, F., Douce, R., Leguay, J.-J., Mathieu, Y. and Guern, J. (1982) A31P Nuclear magnetic resonance study of intracellular pH of plant cells cultivated in liquid medium.Pl. Physiol. 70:1156–1161.

    CAS  Google Scholar 

  44. Mason, T.L. and Wasserman, B.P. (1987) Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds.Phytochemistry 26:2197–2202.

    Article  CAS  Google Scholar 

  45. Mathieu, Y. (1982) pH-Dependence of phosphoenolpyruvate carboxylase fromAcer pseudoplatanus cell suspensions.Pl. Sci. Lett. 28:111–119.

    CAS  Google Scholar 

  46. Mayer, A.M. and Harel, E. (1979) Polyphenol oxidases in plants.Phytochemistry 18:193–215.

    Article  CAS  Google Scholar 

  47. Mazau, D., Rumeau, D. and Esquerré-Tugayé, M.-T. (1987) Molecular approaches to understanding cell surface interactions between plants and fungal pathogens.Pl. Physiol. Biochem. 25:337–343.

    CAS  Google Scholar 

  48. Meshitsuka, G. and Nakano, J. (1979) Studies on the mechanism of lignin color reaction (XIII). Mäule color (9).Mokuzai Gakkaishi 25:588–594.

    CAS  Google Scholar 

  49. Mortensen, K. and Bergman, J.W. (1983) Cultural variance ofAlternaria carthami isolates and their virulence on safflower.Pl. Dis. 67:1191–1194.

    Article  Google Scholar 

  50. Ojalvo, I., Rokem, J.S., Navon, G. and Goldberg, I. (1987)31P-NMR Study of elicitor treatedPhaseolus vulgaris cell suspension cultures.Pl. Physiol. 85:716–719.

    CAS  Google Scholar 

  51. Onoe, T., Tani, T., Minagawa, S. and Sagawa, H. (1987) Ultrastructural changes of stomata in relation to specificity of rust fungi,in: Nishimura, S., Vance, C.P. and Doke, N. [Eds.] Molecular Determinants of Plant Diseases. pp. 29–43. Japan Scientific Societies Press, Tokyo, and Springer-Verlag, Heidelberg.

    Google Scholar 

  52. Pelissier, B., Thibaud, J.B., Grignon, C. and Esquerré-Tugayé, M.-T. (1986) Cell surfaces in plant-microorganisms interactions. VII. Elicitor preparations from two fungal pathogens depolarize plant membranes.Pl. Sci. 46:103–109.

    Article  CAS  Google Scholar 

  53. Purwin, C, Nicolay, K., Scheffers, W.A. and Holzer, H. (1986) Mechanism of control of adenylate cyclase activity in yeast by fermentable sugars and carbonyl cyanide m-chlorophenylhydrazone.J. biol. Chem. 261:8744–8749.

    PubMed  CAS  Google Scholar 

  54. Rhodes, J.M. and Wooltorton, L.S.C. (1978) The biosynthesis of phenolic compounds in wounded plant storage tissues,in: Kahl, G. [Ed.] Biochemistry of Wounded Plant Tissues, pp. 243–286. Walter de Gruyter & Co., Berlin.

    Google Scholar 

  55. Ride, J.P. (1983) Cell walls and other structural barriers in defence,in: Callow, J.A. [Ed.] Biochemical Plant Pathology, pp. 215–236. John Wiley & Sons Ltd., Chichester, U.K.

    Google Scholar 

  56. Ride, J.P. and Pearce, R.B. (1979) Lignification and papilla formation at sites of attempted penetration of wheat leaves by non-pathogenic fungi.Physiol. Pl. Path. 15:79–92.

    Article  CAS  Google Scholar 

  57. Robertsen, B. (1986) Elicitors of the production of lignin-like compounds in cucumber hypocotyls.Physiol. molec. Pl. Path. 28:137–148.

    CAS  Google Scholar 

  58. Roby, D.,Toppan, A. and Esquerré-Tugayé, M.-T. (1985) Cell surfaces in plant-microorganism interactions. V. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoproteins in plants.Pl. Physiol. 77:700–704.

    CAS  Google Scholar 

  59. Satô, M. (1967) Metabolism of phenolic substances by the chloroplasts-III. Phenolase as an enzyme concerning the formation of esculetin.Phytochemistry 6:1363–1373.

    Article  Google Scholar 

  60. Scheel, D., Hauffe, K.D., Jahnen, W. and Hahlbrock, K. (1986) Stimulation of phytoalexin formation in fungus-infected plants and elicitor-treated cell cultures of parsley,in: Lugtenberg, B. [Ed.] NATO ASI Series, Vol. H4: Recognition in Microbe-Plant Symbiotic and Pathogenic Interactions, pp. 325–331. Springer-Verlag, Heidelberg.

    Google Scholar 

  61. Strack, D., Gross, W., Wray, V. and Grotjahn, L. (1987) Enzymic synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons.Pl. Physiol. 83:475–478.

    CAS  Google Scholar 

  62. Strasser, H., Hoffmann, C, Grisebach, H. and Matern, U. (1986) Are polyphosphoinositides involved in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells?Z. Naturforsch. 41c:717–724.

    Google Scholar 

  63. Strasser, H. and Matern, U. (1986) Minimal time requirement for lasting elicitor effects in cultured parsley cells.Z. Naturforsch. 41c:222–227.

    Google Scholar 

  64. Strasser, H., Tietjen, K.G., Himmelspach, K. and Matern, U. (1983) Rapid effect of an elicitor on uptake and intracellular distribution of phosphate in cultured parsley cells.Pl. Cell Rep. 2:140–143.

    Article  CAS  Google Scholar 

  65. Tietjen, K.G. and Matern, U. (1983) Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. 2. Effects on enzyme activities.Eur. J. Biochem. 131:409–413.

    Article  PubMed  CAS  Google Scholar 

  66. Trajkovski, V. (1976) Resistance toSphaerotheca mors-uvae (Schw.) Berk, inRibes nigrum L.Swedish J. agric. Res. 6:215–223.

    CAS  Google Scholar 

  67. Uritani, I. and Õba, K. (1978) The tissue slice system as a model for studies of host-parasite relationships,in: Kahl, G. [Ed.] Biochemistry of Wounded Plant Tissues, pp. 287–308. Walter de Gruyter & Co., Berlin.

    Google Scholar 

  68. Vance, C.P., Kirk, T.K. and Sherwood, R.T. (1980) lignification as a mechanism of disease resistance.A. Rev. Phytopath. 18:259–288.

    Article  CAS  Google Scholar 

  69. Vance, C.P. and Sherwood, R.T. (1977) Lignified papillae formation as a mechanism for protection in reed canarygrass.Physiol. Pl. Path. 10:247–256.

    Article  CAS  Google Scholar 

  70. Van Holst, G.-J. and Varner, J.E. (1984) Reinforced polyproline II conformation in a hydroxyproline-rich cell wall glycoprotein from carrot root.Pl. Physiol. 74:247–251.

    Google Scholar 

  71. Van Loon, L.C. (1985) Pathogenesis-related proteins.Pl. molec. Biol. 4:111–116.

    Article  Google Scholar 

  72. Vaughan, P.F.T. and Butt, V.S. (1969) The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet(Beta vulgaris L.).Biochem. J. 113:109–115.

    PubMed  CAS  Google Scholar 

  73. Villegas, R.J.A., Shimokawa, T., Okuyama, H. and Kojima, M. (1987) Purification and characterization of chlorogenic acid: chlorogenate caffeoyltransferase in sweet potato roots.Phytochemistry 26:1577–1581.

    Article  CAS  Google Scholar 

  74. Walker, R.L. and Wilson, E.L. (1975) Studies on the enzymic browning of apples. Inhibition of apple o-diphenol oxidase by phenolic acids.Sci. Fd Agric. 26:1825–1831.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

matern, u., kneusel, r.e. Phenolic compounds in plant disease resistance. Phytoparasitica 16, 153–170 (1988). https://doi.org/10.1007/BF02980469

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980469

Key Words

Navigation