Skip to main content
Log in

Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aligiannis, N., Mitaku, S., Mitrocotsa, D., and Leclerc, S., Flavonoids as cycline-dependent kinase inhibitors: inhibition of cdc 25 phosphatase activity by flavonoids belonging to the quercetin and kaempferol series.Planta Med., 67, 468–470 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Arts, I. C., Sesink, A. L., Faassen-Peters, M., and Hollman, P. C., The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides.Br. J. Nutr., 91, 841–847 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Avontuur, J. A., Boomsma, F., van den Meiracker, A. H., de Jong, F. H., and Bruining, H. A., Endothelin-1 and blood pressure after inhibition of nitric oxide synthesis in human septic shock.Circulation, 99, 271–275 (1999).

    PubMed  CAS  Google Scholar 

  • Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H., An immortalized cell line expresses properties of activated microglial cells.J. Neurosci. Res., 31, 616–621 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Chang, B. S., Kwon, W. S., and Kim, C. M., The chemical structures and their antioxidant activity of the components isolated from the heartwood of Hemiptelea davidii.Kor. J. Pharmcogn., 35, 80–87 (2004).

    CAS  Google Scholar 

  • Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.Anal. Biochem., 126, 131–138 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Gudej, J., Kaempferol and quercetin glycosides from Rubus idaeus L. leaves.Acta. Pol. Pharm., 60, 313–315 (2003).

    PubMed  CAS  Google Scholar 

  • Ha, H. J., Kwon, Y. S., Park, S. M., Shin, T., Park, J. H., Kim, H. C., Kwon, M. S., and Wie, M. B., Quercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures.Biol. Pharm. Bull., 26, 544–546 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Havsteen, B., Flavonoids, a class of natural products of high pharmacological potency.Biochem. Pharmacol., 32, 1141–1148 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Hou, L., Zhou, B., Yang, L., and Liu, Z. L., Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by flavonols and their glycosides.Org. Biomol. Chem., 2, 1419–1423 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hwang, B. Y., Kim, H. S., Lee, J. H., Hong, Y. S., Ro, J. S., Lee, K. S., and Lee, J. J., Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus.J. Nat. Prod., 64, 82–84 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., Kim, Y. S., Kim, S. Y., and Suk, K., The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production.Neurosci. Lett., 309, 67–71. (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y., and Kim, H. P., Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships.Biochem. Pharmacol., 58, 759–765 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. S., Kong, P. J., Kim, B. S., Sheen, D. H., Nam, S. Y., and Chun, W., Inhibitory action of minocycline on lipopolysaccharide-induced release of nitric oxide and prostaglandin E2 in BV2 microglial cells.Arch. Pharm. Res., 27, 314–318 (2004).

    PubMed  CAS  Google Scholar 

  • Liu, B., Gao, H. M., Wang, J. Y., Jeohn, G. H., Cooper, C. L., and Hong, J. S., Role of nitric oxide in inflammation-mediated neurodegeneration.Ann. N. Y. Acad. Sci., 962, 318–331 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Markham, K. R., Geiger, H., and Jaggy, H., Kaempferol-3-O- glucosyl(1-2)rhamnoside from Ginkgo biloba and a reappraisal of other gluco(1-2, 1-3, and 1-4)rhamnoside structures.Phytochemistry, 31, 1009–1011. (1992).

    PubMed  CAS  Google Scholar 

  • Masuoka, C., Ono, M., Ito, Y., Okawa, M., and Nohara, T., New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum.Chem. Pharm. Bull. (Tokyo), 50, 1413–1415 (2002).

    Article  CAS  Google Scholar 

  • Murphy, M. P., Nitric oxide and cell death.Biochim. Biophys. Acta, 1411, 401–414 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Nairn, H. Y., Williamson, G., Swallow, D. M., and Kroon P. A., Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans.Eur. J. Nutr., 42, 29–42 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wattel, A., Kamel, S., Mentaverri, R., Lorget, F., Prouillet, C., Petit, J. P., Fardelonne, P., and Brazier, M., Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol onin vitro osteoclastic bone resorption.Biochem. Pharmacol., 65, 35–42 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Won, H. M., Kwon, W. S., Lee, J. H., and Kim, C. M., Chemical constituents of the leaves of Weigela subsessillis.Kor. J. Pharmcogn., 35, 1–5 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjoo Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y.S., Kim, SS., Sohn, S.J. et al. Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Arch Pharm Res 27, 751–756 (2004). https://doi.org/10.1007/BF02980144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980144

Key words

Navigation