Skip to main content
Log in

Reaction of spruce cells toward heavy metals and the influence of culture conditions

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background

Plant cell cultures may serve as biosensors for the detection of heavy metals and other toxic substances. Standard culture media and protocols are frequently utilised, but in these media no care is usually taken to control the influence of hormones and nutrients on the reaction of the enzymes or metabolites under consideration as parts of the sensor. The present paper investigates the influence of media composition on the reaction of spruce cells towards heavy metals.

Methods

Spruce cell cultures were grown in a standard medium, either i) alone, ii) containing 0.3% sucrose or iii) containing 3% sucrose and the hormones BAP and NAA. The cell cultures were then incubated in medium with fungal elicitor, H2O2, CdSO4 (50 to 500 µM), or, alternatively, with a standard heavy metal mixture containing 80 µM Na2HAsO4, 150 µM CdSO4 and 200 µM PbCl2.

Results

Depending on the nutrient status and hormone availability, large differences in glutathione contents and the GSH/ GSSG ratio were observed. However, the cellular redox state seemed to remain more or less constant. Glutathione S-trans-ferase activity was determined with four substrates, and high induction rates for the conjugation of three substrates were observed when hormones were omitted from the media. 1,2-epoxy-nitrophenoxy-propane conjugation was highest in starving cells in the presence of hormones, showing a transient GST induction, with highest rates occurring after 16 hrs following incubation; the induction effect was lost after 24 hrs.

Conclusion

A medium containing 3 % sucrose and both hormones (BAP and NAA) appears to be most favourable for cellular growth as well as the expression of a basis level of detoxification enzymes and antioxidants. With this combination, early responses towards heavy metals at low concentration can be monitored.

Recommendations and Perspective

Plant cell cultures are valuable tools for the bioindication of heavy metals and toxic xenobiotics. If standard media and protocols are utilised, the influence of hormones and nutrients on the reaction of the biosensor have to be evaluated thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daniel V (1993): Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Molecul Biol 28, 173–207

    Article  CAS  Google Scholar 

  2. Dixit V, Pandey V, Shyam R (2001): Differential antioxidative response to cadmium in roots and leaves of pea (Pisum sativum L.). J Exp Bot 52 (358) 1101–1109

    Article  CAS  Google Scholar 

  3. Habig WH, Pabst MJ, Jakoby WB (1974): Glutathione-S-transferases: the first step in enzymatic mercapturic acid formation. J Biol Chem 249, 7130–7139

    CAS  Google Scholar 

  4. Hayes JD, Pulford DJ (1995): The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30 (6) 445–600

    Article  CAS  Google Scholar 

  5. Herbers K, Meuwly P, Metraux JP, Sonnewald U (1996): Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett 397 (2–3) 239–44

    Article  CAS  Google Scholar 

  6. Klinedinst S, Pascuzzi P, Redman J, Desai M, Arias J (2000): A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol Biol 42, 679–688

    Article  CAS  Google Scholar 

  7. Lamoureux GL, Rusness DG (1989): The role of glutathione and glutathione S-transferases in pesticide metabolism, selectivity and mode of action in plants and insects. In: Dolphin D., Poulson R., Avramovic O. (Eds.), Glutathione: chemical biochemical and medical aspects, Vol IIIB, Ser: Enzyme and Cofactors, pp 153–196. J. Wiley & Sons, New York

    Google Scholar 

  8. Messner B, Schröder P (1999): Burst amplifying system in cell suspension cultures of spruce (Picea abies): Modulation of elicitor-induced release of hydrogen peroxide (oxidative burst) by ionophores and salicylic acid. Appl Botany 73, 6–10

    CAS  Google Scholar 

  9. Noctor G, Gomez L, Vanacker H, Foyer CH (2002): Interactions between biosynthesis, compartimentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53 (372) 1283–1304

    Article  CAS  Google Scholar 

  10. Peel AE, Brice A, Marzin D, Erb F (1991): Cellular uptake and biotransformation of arsenic V in transformed human cell lines HeLa S3 and Hep G2. Toxicol. In Vitro 5, 165–168

    Article  CAS  Google Scholar 

  11. Rauser W (1990): Phytochelatins. Annu Rev Biochem 59, 61–86

    Article  CAS  Google Scholar 

  12. Schmöger MEV, Oven M, Grill E (2000): Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122, 793–801

    Article  Google Scholar 

  13. Schroder P, Berlcau C (1993): Characterization of cytosolic glutathione S-transferase in spruce needles: GST isozymes of healthy trees. Bot Acta 106, 301–306

    Google Scholar 

  14. Schröder P, Fischer C, Debus R, Wenzel A (2003): Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. ESPR -Environ Sci & Pollut Res 10 (4) 225–234

    Article  Google Scholar 

  15. Schröder P, Götzberger C (1997): Partial purification and characterization of glutathione S-transferase isozymes from the leaves ofJuniperus communis, Larix decidua andTaxus baccata. Appl Botany 71, 31–37

    Google Scholar 

  16. Siller-Cepeda JH, Chen THH, Fuchigami LH (1991): High performance liquid chromatography analysis of oxidized glutathione in woody plant tissue. Plant Cell Physiol 32, 1179–1185

    CAS  Google Scholar 

  17. Tully DB, Collins BJ, Overstreet JD, Smith CS, Dinse GE, Mumatz MM, Chapin RE (2000): Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Tox Appl Pharmacol 168, 79–90

    Article  CAS  Google Scholar 

  18. Wagner U, Mauch F (2000): Glutathione S-transferases: A complex gene family in search of a function http://cost829.dhs.org/reports/sia31.htm

  19. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inze D, VanCamp W (1997): Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal 16, 4806–4816

    Article  CAS  Google Scholar 

  20. Zhou J, Goldsbrough PB (1993): AnArabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Mol Biol 22, 517–523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, P., Fischer, C. Reaction of spruce cells toward heavy metals and the influence of culture conditions. Environ Sci & Pollut Res 11, 388–393 (2004). https://doi.org/10.1007/BF02979657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979657

Keywords

Navigation