Skip to main content
Log in

Virtual simulation in radiation therapy planning. Report of five-year experience

Simulación virtual en la planificación de la radioterapia. Experiencia de 5 años

  • Originales
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Abstract

Background

Modern imaging systems and three-dimensional (3-D) treatment planning systems have led to the development of virtual simulation.

Purpose

To report our five-year experience of working with virtual simulation and to evaluate whether conventional simulation can be completely substituted by virtual simulation.

Materials and methods

The methodology and clinical implementation of virtual simulation procedures based on a virtual simulation chain manufactured by General Electric Medical Systems and carried out in our department were carefully analyzed.

Results

Average time for virtual simulation was not longer than that required for conventional simulation while the quality of the plans generated was greatly increased. In our experience, the only practical limitation was computed tomography tunnel aperture, which was restrictive with certain patient positions. Changing patient treatment position almost always solved this problem

Conclusions

Virtual simulation procedures are feasible, accurate, and able to substitute conventional simulation with great advantage.

Resumen

Antecedentes

Las modernas técnicas de imagen y los sistemas de planificación tridimensionales de radioterapia han conducido al desarrollo de la simulación virtual.

Propósito

Los procedimientos de simulación virtual, basados en una cadena de simulación virtual de la empresa General Electric Medical Systems, han sido cuidadosamente analizados en nuestro servicio con referencia a la metodología e implementación clínica.

Resultados

El tiempo medio de la simulación virtual no es superior al de la simulación convencional, mientras que la calidad de las planificaciones realizadas por el método virtual se ha incrementado notablemente. La Única limitación práctica, en nuestra experiencia, es la derivada de la limitada abertura del tÚnel del tomögrafo axial computarizado, que es restrictiva para ciertas posiciones del paciente, aunque el cambio de la posición del tratamiento de éste resuelve casi siempre el problema

Conclusiones

El procedimiento de simulación virtual es factible, preciso y capaz de sustituir ventajosamente a la simulación convencional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ICRU 50 Report 50. Prescribing, Recording, and Reporting Photon Beam Therapy. Bethesda, Maryland: International Commission on Radiation Units and Measurements, 1993.

  2. Pickett B, Roach M, Verhey L. The value of nonuniform margins for six-field conformal irradiation of localized prostate cancer. Int J Radiat Oncol Biol Phys 1995; 32: 211–218.

    Article  CAS  PubMed  Google Scholar 

  3. Antolak JA, Rosen II, Childress CH, Zagars GK, Pollack A. Prostate Target Volume variations during a course of radiotherapy. Int J Radiat Oncol Biol Phys 1998; 42: 661–672.

    Article  CAS  PubMed  Google Scholar 

  4. Tinger A, Michalski JM, Cheng A et al. A critical evaluation of the planing target volume for 3-D conformal radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys 1998; 42: 213–221.

    Article  CAS  PubMed  Google Scholar 

  5. Ekberg L, Holmberg O, Wittgren L Bjelkengren G, Landberg T. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 1998; 48: 71–77.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng CW, Chin LM, Kijewski PK. A coordinate transfer of anatomical information from CT to treatment simulation. Int J Radiat Oncol Biol Phys 1987; 13: 1559–1569.

    Article  CAS  PubMed  Google Scholar 

  7. Sherouse GW, Novins K, Chaney E. Computation of digitally reconstructed radiography for use in radiotherapy treatment design. Int J Radiat Oncol Biol Phys 1990; 18: 651–658.

    Article  CAS  PubMed  Google Scholar 

  8. Galvin JM, Sims C, Dominiak G, Cooper JS. The use of digitally reconstructed radiographs for three dimensional treatment planning and CT-Simulation. Int J Radiat Oncol Biol Phys 1995; 31: 935–942.

    Article  CAS  PubMed  Google Scholar 

  9. Goitein M, Abrams M. Multi-dimensional treatment planning: I. Delineation of anatomy. Int J Radiat Oncol Biol Phys 1983; 9: 777–787.

    Article  CAS  PubMed  Google Scholar 

  10. Goitein M, Abrams M, Rowell D, Pollari H, Wiles J. Multi-dimensional treatment planning: II, Beam’s eye view, back projection, and projection through CT sections. Int J Radiat Oncol Biol Phys 1983; 9: 789–797.

    Article  CAS  PubMed  Google Scholar 

  11. McShan DL, Fraass BA, Lichter AS. Full integration of the beam’s eye view concept into computerised treatment planning. Int J Radiat Oncol Biol Phys 1990; 18: 1485–1494.

    Article  CAS  PubMed  Google Scholar 

  12. Myrianthopoulos LC, Chen GTY, Vijayakumar S, Halpern HJ, Spelbring DR, Pelizzari CA. Beam’s eye view volumetrics. An aid in rapid treatment plan development and evaluation. Int J Radiat Oncol Biol Phys 1992; 23: 367–375.

    Article  CAS  PubMed  Google Scholar 

  13. Naida JD, Aisbruch A, Schoeppel SL, Sandier HM, Turrisi AT, Lichter AS. Analysis of localization errors in the definition of the mantle field using a beam’s eye view treatment-planing system. Int J Radiat Oncol Biol Phys 1996; 35: 377–382.

    Article  CAS  PubMed  Google Scholar 

  14. Bauer-Kirpes B, Schlegel W, Boesecke R, Lorenz WJ. Display of organs and isodoses as shaded 3-D objects for 3-D therapy planning. Int J Radiat Oncol Biol Phys 1987; 13: 135–140.

    Article  CAS  PubMed  Google Scholar 

  15. Photon Treatment Planning Collaborative Working Group. Statement of-the-art of external photon beam radiation treatment planning. Int J Radiat Oncol Biol Phys 1991; 21: 9–23.

    Article  Google Scholar 

  16. Rosenberger FU, Matthews JW, Johns GC, Draymala RE, Purdy JA. Use of transputers for real time dose calculation and presentation of three-dimensional radiation treatment planning. Int J Radiat Oncol Biol Phys 1995; 25: 709–719.

    Article  Google Scholar 

  17. Purdy JA, Harms WB, Matthews JW et al. Advances in 3-dimensional radiation treatment planning systems: roomview display with real time interactivity. Int J Radiat Oncol Biol Phys 1993; 27: 933–944.

    Article  CAS  PubMed  Google Scholar 

  18. Pelizzari CA, Grzeszczuk R, Chen GTY et al. Volumetric visualization of anatomy for treatment planning. Int J Radiat Oncol Biol Phys 1996; 34: 205–211.

    Article  CAS  PubMed  Google Scholar 

  19. Lyman JT, Wolbarst AB. Optimization of radiation therapy III: a method of assessing complication probabilities from dose volume histograms. Int J Radiat Oncol Biol Phys 1987; 13: 103–109.

    Article  CAS  PubMed  Google Scholar 

  20. Niemierko A, Goitein M. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with critical element architecture. Radiother Oncol 1991; 20: 166–176.

    Article  CAS  PubMed  Google Scholar 

  21. Photon Treatment Planning Collaborative Working Group. Three dimensional dose calculations for radiation treatment planning. Int J Radiat Oncol Biol Phys 1991; 21: 25–36.

    Google Scholar 

  22. Photon Treatment Planning Collaborative Working Group. Three dimensional display in planning radiation therapy: a clinical perspective. Int J Radiat Oncol Biol Phys 1991; 21: 79–89.

    Article  Google Scholar 

  23. Martel MK, Ten Haken RK, Hazuka MB, Turrisi AJ, Fraas BA, Lichter AS. Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 1994; 28: 575–581.

    Article  CAS  PubMed  Google Scholar 

  24. Kessler ML, Ten Haken RK, Fraass BA, McShan DL. Expanding the use and effectiveness of dose-volume histograms for 3-D treatment planning I: integration of 3-D dosedisplay Int J Radiat Oncol Biol Phys 1994; 29: 1125–1131.

    Article  CAS  PubMed  Google Scholar 

  25. Martel MK, Sandier HM, Cornblath WT et al. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors. Int J Radiat Oncol Biol Phys 1997; 38: 273–284.

    Article  CAS  PubMed  Google Scholar 

  26. Ten Haken RK, Balter JM, Marsh LH, Robertson JM, Lawrence TS. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys 1997; 38: 613–617.

    Article  Google Scholar 

  27. Robertson JM, Ten Haken RK, Hazuka MB et al. Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 1997; 37: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  28. Yaparpalvi R, Fontenla DP, Tyrech SK, Broselli LR, Beitler JJ. Parotid gland tumors: A comparison of postoperative radiotherapy techniques using three dimensional (3-D) dose distributions and dose-volume histograms (DVHS). Int J Radiat Oncol Biol Phys 1998; 40: 43–49.

    Article  CAS  PubMed  Google Scholar 

  29. Boersma LJ, Van den Brink M, Bruce AM et al. Estimation of the incidence of late bladder and rectum complications after high-dose (70–78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms. Int J Radiat Oncol Biol Phys 1998; 41: 83–92.

    Article  CAS  PubMed  Google Scholar 

  30. Das, IJ, Cheng, EC, Freedman, G, Fowble B. Lung and heart dose volume analyses with CT simulator in radiation treatment of breast cancer. Int J Radiat Oncol Biol Phys 1998; 42: 11–19.

    Article  CAS  PubMed  Google Scholar 

  31. Pérez-Calatayud J, Lliso F, Carmona V et al. Five years follow-up of quality assurance program in virtual simulation. Med Phys 1999; 26: 1164.

    Article  Google Scholar 

  32. Sherouse GW, Chaney EL. The portable virtual simulator. Int J Radiat Oncol Biol Phys 1991; 21: 475–482.

    Article  CAS  PubMed  Google Scholar 

  33. Dowsett RJ, Galvin JM, Cheng E et al. Contouring structures for 3-dimensional treatment planning. Int J Radiat Oncol Biol Phys 1992; 22: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  34. Pérez CA, Purdy JA, Harms W et al. Three-dimensional treatment planning and conformal radiation therapy: preliminary evaluation. Radiother Oncol 1995; 36: 32–43.

    Article  PubMed  Google Scholar 

  35. Kobeissi BJ, Gupta M, Pérez CA et al. Physician resource utilization in radiation oncology: a model based on management of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 1998; 40: 593–603.

    Article  CAS  PubMed  Google Scholar 

  36. Sherouse GW, Bourland JD, Reynolds K, McMurry HL, Mitchell TP, Chaney EL. Virtual simulation in the clinical setting: Some practical considerations. Int J Radiat Oncol Biol Phys 1990; 19: 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  37. Ragan DP, He T, Mesina CF, Ratanatharathorm V. CT-based simulation with laser patient marking. Med Phys 1993; 20: 379–380.

    Article  CAS  PubMed  Google Scholar 

  38. McGee KP, Das IJ. Commissioning, acceptance testing, & quality assurance of a CT simulator. In: De Coia LR, Shultheiss P, Hanks GE, eds. A Practical Guide to CT simulation. Madison, Wisconsin: Fox Chase Cancer Center, AMP, 1995; 10.

    Google Scholar 

  39. Hunt M. Localization & field design using a CT simulator. In: De Coia LR, Shultheiss P, Hanks GE, eds. A Practical Guide to CT simulation. Madison, Wisconsin: Fox Chase Cancer Center, AMP, 1995; 32.

    Google Scholar 

  40. Heidtman CM. Clinical applications of a CT simulator: precision treatment planning and portal marking in breast cancer. Int J Radiat Oncol Biol Phys 1990; 15: 113–117.

    CAS  Google Scholar 

  41. Nishidai T, Nagato Y, Takahashi M, et al. CT simulator: a new 3-D planning and simulating system for radiotherapy: part I: description of system. Int J Radiat Oncol Biol Phys 1989; 18: 499–504.

    Article  Google Scholar 

  42. Nagata Y, Nishidai T, Abe M, Takahashi M et al. CT simulator: a new 3-D planning and simulating system for radiotherapy: part 2. clinical application. Int J Radiat Oncol Biol Phys 1990; 18: 505–513.

    Article  CAS  PubMed  Google Scholar 

  43. Gilhuijs KG, Drukker K, Touw A, Vande Ven P, Van Herk M. Interactive three dimensional inspection of patient setup in radiation therapy using digital portal images and computed tomography data. Int J Radiat Oncol Biol Phys 1996; 34: 873–885.

    Article  CAS  PubMed  Google Scholar 

  44. Pérez-Calatayud J, Lliso F, Carmona V, et al. Improved dose homogeneity in opposed beams irradiation using one additional static field [abstract]. Med Phys 1999; 26: 1158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petschen, I., Pérez-Calatayud, J., Tormo, A. et al. Virtual simulation in radiation therapy planning. Report of five-year experience. Rev Oncología 2, 213–222 (2000). https://doi.org/10.1007/BF02979557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979557

Key words

Palabras clave

Navigation