Advertisement

Revista de Oncología

, Volume 2, Issue 3, pp 141–145 | Cite as

Tumor DNA in plasma of breast cancer patients. Relation to treatment

  • José M. Silva
  • Antonio Sánchez
  • Celia Miralles
  • Fátima Navarro
  • Félix Bonilla
Originales
  • 27 Downloads

Abstract

Background

The present study was designed to investigate the possible impact of treatment on changes in plasma DNA showing tumor DNA features in breast cancer patients.

Methods

Thirty-eight patients were included. DNA extracted from tumor and normal tissues, normal blood cells, and plasma was used for molecular studies. Molecular alterations in six polymorphic markers (TH2, D10S197, D16S421, D17S855, D17S654, D9S161), mutations in TP53, and aberrant methylation of the first exon of p16INK4a were used to characterize tumor and plasma DNA. After mastectomy, 26 patients received adjuvant chemotherapy and 12, hormone therapy.

Results

At least one molecular alteration was detected in 28 tumors, and 9 patients showed more than one concomitant molecular change. Twenty patients (53%) displayed loss of heterozygosity (LOH), 6 (16%) TP53 mutations and 11 (29%) methylation of the first exon of p16INK4a. The same molecular aberration was observed in plasma DNA of 18 patients (14 receiving chemotherapy and 4 hormone therapy). Six months after mastectomy, these molecular alterations persisted in the plasma DNA of 6 patients (5 who had completed adjuvant chemotherapy and 1 under hormone therapy).

Conclusions

Circulating plasma DNA present after mastectomy is modified only partially by adjuvant chemotherapy or hormone therapy.

Key words

Breast cancer Plasma DNA Microsatellites TP53 mutations Methylation of p16INKa 

ADN tumoral en plasma de pacientes con cancer de mama. Relación con el tratamiento

Resumen

Fundamento

Este trabajo fue diseñado para estudiar el posible impacto adyuvante sobre las variaciones de ADN libre en plasma con características del ADN tumoral en pacientes con cáncer de marna.

Métodos

Se estudiaron 38 enfermas. El ADN para el análisis molecular fue extraído de tumor y del correspondiente tejido normal, de linfocitos y del plasma. Se utilizaron como marcadores para caracterizar el ADN 6 microsatélites (TH2, D10S197, D16S421, D17S855, D17S654 y D9S161), las mutaciones en TP53 y metilación aberrante del primer exón de pl6INK4a. Después de la mastectomía, 26 pacientes recibieron quimioterapia adyuvante y 12, hormonoterapia.

Resultados

Se detectó al menos una alteración molecular en 28 tumores, y en 9 casos un mismo tumor presentó más de una alteración molecular simultáneamente. Veinte tumores (53%) presentaron pérdidas de heterocigosidad (LOH), 6 tumores (16%) mutaciones en TP53 y 11 tumores (29%), metilación aberrante de p16INK4a. La misma alteración molecular se observó en el ADN plasmático de 18 pacientes, 14 de las cuales recibieron quimioterapia y cuatro, hormonoterapia. Seis meses después de la mastectomía, 6 pacientes mantenían las mismas alteraciones moleculares en el ADN plasmático, cinco correspondientes al grupo de quimioterapia y una al de hormonoterapia.

Conclusiones

El ADN libre en plasma, similar al ADN tumoral, puede encontrarse después de la mastectomía y el tratamiento adyuvante sólo modifica parcialmente este parámetro.

Palabras clave

Cancer de marna Microsatélites Mutaciones en TP53 Metilación de p16INK4a ADN plasmático 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelsey JL, Horm-Ross PL. Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev 1993; 15: 7–16.PubMedGoogle Scholar
  2. 2.
    Mao L, Hruban RH, Boyle JO, Tockman M, Sidransky D. Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res 1994; 54: 1634–1637.PubMedGoogle Scholar
  3. 3.
    Sidransky D, Von Eschenbach A, Tsai YC, Jones P, Summerhayes I, Marshall F et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 1991; 252: 706–709.CrossRefPubMedGoogle Scholar
  4. 4.
    Kondo H, Sugano K, Fukamaya N, Kygoku A, Nose H, Shimada K et al. Detection of point mutations in the K-ras oncogene at codon 12 in pure pancreatic juice for diagnosis of pancreatic carcinoma. Cancer 1994; 73: 1589–1594.CrossRefPubMedGoogle Scholar
  5. 5.
    Sidransky D, Tokino T, Hamilton SR, Kinzler KW, Levin B, Frost P et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 1992; 256: 102–105.CrossRefPubMedGoogle Scholar
  6. 6.
    Motomura K, Koyama H, Noguchi S, Inaji H, Azuma C. Detection of c-erbB-2 gene amplification in nipple discharge by means of polymerase chain reaction. Breast Cancer Res Treat 1995; 33: 89–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Leon SA, Shapiro B, Sklaroff DM, Yaros J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37: 646–650.PubMedGoogle Scholar
  8. 8.
    Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 1983; 51: 2116–2120.CrossRefPubMedGoogle Scholar
  9. 9.
    Anker P, Stroun M, Maurice PA. Spontaneous release of DNA by human blood lymphocytes in vitro. Cancer Res 1975; 35: 2375–2382.PubMedGoogle Scholar
  10. 10.
    Stroun M, Anker P, Lyautey J, Lederry C, Maurice PA. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 1987; 23: 707–712.CrossRefPubMedGoogle Scholar
  11. 11.
    Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Baljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989; 46: 318–322.CrossRefPubMedGoogle Scholar
  12. 12.
    Koffler D, Agnello V, Winchester R, Kunkel HG. The occurrence of single stranded DNA in the serum of patients with SLE and other diseases. J Clin Invest 1973; 52: 198–204.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mulcahy HE, Lyautey J, Lederrey C, Cheng XQ, Anker P, Alstead EM et al. A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res 1998; 4: 271–275.PubMedGoogle Scholar
  14. 14.
    Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomark Prev 1994; 3: 67–71.Google Scholar
  15. 15.
    Anker P, Lefort F, Vasioukhin V, Lyautey J, Lederrey C, Cheng XQ et al. K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology 1997; 112: 1114–1120.CrossRefPubMedGoogle Scholar
  16. 16.
    Hibi K, Robinson CR, Booker S, Wu L, Hamilton SR, Sidransky D et al. Molecular detection of genetic alterations in serum of colorectal cancer patients. Cancer Res 1998; 58: 1405–1407.PubMedGoogle Scholar
  17. 17.
    Kopreski MS, Benko FA, Kwee C, Leitzel KE, Eskander E, Lipton A et al. Detection of mutant K-ras DNA in plasma or serum of patients with colorectal cancer. Br J Cancer 1997; 76: 1293–1299.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 1994; 86: 774–779.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen XQ, Stroun M, Magnenat JL, Nicod NP, Kurt A-M, Lyautey J et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996; 2: 1033–1035.CrossRefPubMedGoogle Scholar
  20. 20.
    Silva JM, González R, Domínguez G, García JM, España P, Bonilla F. TP53 gene mutations in plasma DNA pf cancer patients. Genes Chromosomes Cancer 1999; 24: 160–161.CrossRefPubMedGoogle Scholar
  21. 21.
    Sánchez-Céspedes M, Monzó M, Rosell R, Pifarré A, Calvo R, López-Cabrerizo MP et al. Detection of chromosome 3p alterations in serum DNA of non-small-cell lung cancer patients. Ann Oncol 1998; 9: 113–116.CrossRefPubMedGoogle Scholar
  22. 22.
    Esteller M, Sánchez-Céspedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999; 59: 67–70.PubMedGoogle Scholar
  23. 23.
    Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 1996; 2: 1035–1037.CrossRefPubMedGoogle Scholar
  24. 24.
    Goessl C, Heicapell R, Münker R, Anker P, Stroun M, Krause H et al. Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res 1998; 58: 4728–4732.PubMedGoogle Scholar
  25. 25.
    Silva JM, Domínguez G, García JM, González R, Villanueva MJ, Navarro F et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res 1999; 59: 3251–3256.PubMedGoogle Scholar
  26. 26.
    Wong IHN, Lo YMD, Zhang J, Liew C-T, Ng MHL, Wong N et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 1999; 59: 71–73.PubMedGoogle Scholar
  27. 27.
    Deng G, Lu Y, Zlotnikov G, Thor AN, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 1996; 274: 2057–2059.CrossRefPubMedGoogle Scholar
  28. 28.
    Patel U, Grundfest-Broniatowski S, Gupta M, Banerjee S. microsatellite instabilities af five chromosomes in primary breast tumors. Oncogene 1994; 9: 3695–3700.PubMedGoogle Scholar
  29. 29.
    Skirnisdottir S, Eiriksdottir G, Baldursson T, Barkardottir RB, Egilsson V, Ingvarsson S. High frequency of allelic imbalance at chromosome region 16q22-23 in human breast cancer: correlation with high PgR and low S phase. Int J Cancer 1995; 64: 112–116.CrossRefPubMedGoogle Scholar
  30. 30.
    Anderson LA, Friedman L, Osborne-Lawrence S, Lynch E, Weissenbach J, Bowcock A et al. High-density genetic map of the BRCA1 region of chromosome 17q12-q21. Genomics 1993; 17: 618–623.CrossRefPubMedGoogle Scholar
  31. 31.
    Steiner G, Schoenberg MP, Linn JF, Mao L, Sidransky D. Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat Med 1997; 3: 621–624.CrossRefPubMedGoogle Scholar
  32. 32.
    Brenner AJ, Aldaz CM. Chromosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Res 1995; 55: 2892–2895.PubMedGoogle Scholar
  33. 33.
    Oto M, Miyake S, Yuasa Y. Optimization of nonradioisotopic single strand conformation polymorphism analysis with a conventional minislab gel electrophoresis apparatus. Anal Biochem 1993; 213: 19–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989; 5: 874–879.CrossRefPubMedGoogle Scholar
  35. 35.
    Singer-Sam J, Yang TP, Mori N, Tanguay RL, Le-Bon JM, Flores CJ et al. DNA methylation in the 5′ region of the mouse PGK-1 gene and a quantitative PCR assay for methylation. En: Clawson GA, Willis DB, Weissbach A, Jones PA, editores. Nucleic Acid Methylation. Nueva York: Alan Liss, Inc., 1990; 128: 285–289.Google Scholar
  36. 36.
    Silva JM, Domínguez G, Villanueva JM, González R, Garcia JM, Corbacho C et al. Aberrant methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer 1999; 80: 1262–1264.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jang SJ, Mao L. Methylation patterns in human androgen receptor gene and clonality analysis. Cancer Res 2000; 60: 864–866.PubMedGoogle Scholar
  38. 38.
    Chen XQ, Bonnefoi H, Diebold-Berger S, Lyautey J, Lederrey C, Faltin-Traub E et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 1999; 5: 297–303.Google Scholar
  39. 39.
    Mayall F, Fairweather S, Wilkins R, Chang B, Nicholls R. Microsatellite abnormalities in plasma of patients with breast carcinoma: concordance with the primary tumour. J Clin Pathol 1999; 52: 363–366.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lo YMD, Chan LYS, Lo KW, Leung SF, Zhang J, Chan ATC et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinomas. Cancer Res 1999; 59: 1188–1191.PubMedGoogle Scholar

Copyright information

© FESEO 2000

Authors and Affiliations

  • José M. Silva
    • 1
  • Antonio Sánchez
    • 1
  • Celia Miralles
    • 1
  • Fátima Navarro
    • 1
  • Félix Bonilla
    • 1
  1. 1.Medical Oncology ServiceMolecular Genetics Unit. Clínica Puerta de HierroMadrid

Personalised recommendations