Skip to main content
Log in

Radioterapia experimental. Parámetros de respuesta tumoral a la radiación

Experimental radiotherapy. Radiation tumour response parameters

  • Artículo Especial
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Abstract

El conocimiento de los parámetros que definen la respuesta a la radiación de los tumores malignos, en particular el coeficiente de regeneración de los clonógenos tumorales supervivientes y la velocidad del proceso de proliferación tumoral subyacente, puede inferirse hoy día a partir de observaciones clínicas precisas, combinando los elementos básicos de la irradiación (dosis-tiempo-fraccionamiento) con los resultados del tratamiento (probabilidad de control observada) y ciertos supuestos relativos al efecto biológico radioinducido sobre los tumores tratados (relaciones dosis-supervivencia, dosis-tiempo y dosis-control tumoral). Ello explica la profunda transformación experimentada por la radioterapia durante los Últimos años. Del empirismo inicial se ha pasado a la aparición de un cuerpo doctrinal sólido, construido sobre bases racionales que permite formular hipótesis, predecir resultados, profundizar en el conocimiento de la biología de los tumores malignos y adoptar decisiones clínicas, impensables hace sólo una o dos décadas, en la terapéutica del cáncer. La radioterapia oncológica se ha configurado así como una disciplina con claros fundamentos científicos e importante proyección clínica, muy alejada de su carácter intuitivo inicial.

Abstract

Improved knowledge about the underlying parameters of malignant tumours response to radiotherapy, specially the tumour clonogen repopulation coefficient and the rate of tumour growth, can be obtained today from carefully analyzed clinical studies combining the basic elements of the irradiation process (dose-time-fractionation) with the results of treatment (probability of tumour control) and some assumptions on the radioinduced tumour biological effect (survival-dose, timedose and tumour control-dose relationships). This explains the deep changes produced in radiation therapy concepts and principles during the last years. From its initial empiricism, radiotherapy has turned out to be a well built doctrinal body able to formulate hypothesis, to predict results, to deepen in the biology of malignant tumours and to adopt clinical decisions, unthinkable one or two decades ago, on cancer treatment. The modern radiation oncology is a discipline with solid scientific basis widely separated from its intuitive prior condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliografía

  1. Pedraza V. Fundamentos científicos de la radioterapia oncológica. Discurso de ingreso en la Real Academia de Medicina. Granada, 1997.

  2. Kellerer AM, Rossi HH. A generalized formulation of dual radiation action. Radiat. Res. 1978; 75: 471–476.

    Article  Google Scholar 

  3. Dale RG. The application of the linear quadratic dose effect equation to fractionated and protracted radiotherapy. Br J. Radiol 1985; 58: 515–521.

    Article  CAS  PubMed  Google Scholar 

  4. Travis EL, Tucker SL. Iso-effectmodels and fractionated radiation therapy. Int J Radiat Oncol Biol Phys 1987; 13: 283–287.

    Article  CAS  PubMed  Google Scholar 

  5. Withers HR, Taylor JMG, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncologica 1988; 27: 131–146.

    Article  CAS  PubMed  Google Scholar 

  6. Withers HR. Biological basis of radiation therapy. En: Pérez CA, editor. Principles and Practice of Radiation Oncology. Filadelfia: JB Lippincott, 1992; 64–96.

    Google Scholar 

  7. Hill RP. Experimental radiotherapy. En: Tannock IF-Hill RP, editores. The basic science of oncology. Nueva York: McGraw Hill, 1992; 276–301.

    Google Scholar 

  8. Maciejewski B, Withers HR, Taylor JMG, Hliniak A. Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor-dose response and repopulation. Int J Radiat Oncol Biol Phys 1989; 16: 831–843.

    Article  CAS  PubMed  Google Scholar 

  9. Hall EJ. Cell survival curves. En: Hall EJ, editor. Radiobiology for the radiologist. Filadelfia: J.B. Lippincott. 1994; 29–43.

    Google Scholar 

  10. Steel GG. The growth rate of human tumours. En: Steel GG, editor. Growth Kinetics of tumors. Oxford: Clarendon Press, 1977; 5–55.

    Google Scholar 

  11. Pedraza V, Guerrero R, Ciges M. Postoperative irradiation in oral cavity and oropharyngeal tumors. Prognostic factors and time-dose relationships. En: álvarezVicent JJ, editor. Head and neck oncology. Bolonia: Monduzzi, 1998; 63–74.

    Google Scholar 

  12. Barton MB, Keane TJ, Gadalla T, Maki E. The effect of treatment time and treatment interruption on tumour control following radical radiotherapy of laryngeal cancer. Radiother Oncol 1992; 23: 137–143.

    Article  CAS  PubMed  Google Scholar 

  13. Maciejewski B, Majewski S. Dose fractionation and tumour repopulation in radiotherapy for bladder cancer. Radiother Oncol 1992; 21: 163–170.

    Article  Google Scholar 

  14. Withers HR, Maciejewski B, Taylor JMG, Hliniak A. Accelerated repopulation in head and neck cancer. Front Radiat Ther Oncol 1988; 22: 1–13.

    Article  CAS  PubMed  Google Scholar 

  15. Peters LJ, Goepfert H, Ang K et al. Evaluation of the dose for postoperative radiation therapy of head and neck cancer: first report of a prospective randomized trial. Int J Radiat Oncol Biol Phys 1993; 26: 3–11.

    Article  CAS  PubMed  Google Scholar 

  16. Parsons JT, Bova FJ, Million RR. A reevaluation of split course technique for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1980; 6: 1645–1649.

    Article  CAS  PubMed  Google Scholar 

  17. Maciejewski B, Preuss-Bayer G, Trott KR. The influence of the number of fractions and overall treatmenttime on the local tumour control of cancer of the larynx. Int J Radiat Oncol Biol Phys 1983; 9: 321–328.

    Article  CAS  PubMed  Google Scholar 

  18. Trott KR, Kummermehr J. What is known about tumour proliferation rates to choose between accelerated fractionation of hyperfractionation. Radiother Oncol 1983; 3: 1–9.

    Article  Google Scholar 

  19. Williams RW, Denekamp J, Fowler JF. A review of alpha/beta ratio’s for experimental tumors: Implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys 1985; 11: 87–92.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor JMG, Withers HR, Mendenhall WM. Dose-time considerations of head and neck squamous cell carcinomas treated with irradiation. Radiother Oncol 1990; 17: 95–102.

    Article  CAS  PubMed  Google Scholar 

  21. Bentzen SM, Johansen LV, Overgaard J, Thames HD. Clinical radiobiology of squamous cell carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys 1991; 20: 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  22. Wang CC. Does prolonged treatment course adversely affect local control of carcinoma of the larynx? Int J Radiat Oncol Biol Phys 1994; 29: 657–666.

    Article  CAS  PubMed  Google Scholar 

  23. Van der Bogaert W. Does tumor control decrease by prolonging overall treatment time or interrupting treat ment in laryngeal cancer? Radiother Oncol 1995; 96: 177–182.

    Article  Google Scholar 

  24. Robertson G. Overall treatment time and the conventional arm of the CHART trial in the radiotherapy of head and neck cancer. Radiother Oncol 1998; 50: 25–28.

    Article  Google Scholar 

  25. Slevin NJ, West CML, Wilson GD, Hendry JH. The potential benefit from individualised radiotherapy scheduling for head and heck tumours on the basis of both histological grade and kinetics. Radiother Oncol 1999; 51: 109–111.

    Article  CAS  PubMed  Google Scholar 

  26. Parsons JT, Thar TL, Bova FJ, Million RB. An evaluation of split course irradiation for pelvic malignancies. Int J Radiat Oncol Biol Phys 1980; 6: 175–181.

    Article  CAS  PubMed  Google Scholar 

  27. Fyles A, Keane TJ, Barton M, Simms J. The effect of treatment duration in the local control of cervix cancer. Radiother Oncol 1992; 25: 273–279.

    Article  CAS  PubMed  Google Scholar 

  28. Keane TJ, Fyles A, O’Sullivan B, Barton M, Maki E, Simms J. The effect of treatment duration on local control of squamous carcinoma of the tonsil and carcinoma of the cervix. Semin Rad Oncol 1992; 2: 26–28.

    Article  Google Scholar 

  29. Mackillop WJ, Bates JHT, O’Sullivan B, Withers HR. The effect of delay in treatment on local control by radiotherapy. Int J Radiat Oncol Biol Phys 1996; 34: 243–250.

    Article  CAS  PubMed  Google Scholar 

  30. Begg AC. Derivation of cell kinetic parameters from human tumours after labelling with bromodeoxyuridine. En: McNally NJ, editor. The scientific basis of modern radiotherapy. Londres: BIR Report 19. 1989; 113–119.

    Google Scholar 

  31. Wilson GD, McNally NJ, Dische S et al. Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation and flow cytometry. Br J Cancer 1988; 58: 423–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Withers HR, Peters LJ. Biological aspects of radiation therapy. En: Fletcher GH, editor. Textbook of radiotherapy. Filadelfia: Lea & Febiger, 1980; 103–179.

    Google Scholar 

  33. Withers HR. Contrarian concepts in the progress of radiotherapy. Radiat Res 1989; 119: 395–412.

    Article  CAS  PubMed  Google Scholar 

  34. Withers HR. Treatment induced accelerated human tumor growth. Seminars in Radiation Oncology 1993; 3: 135–143.

    Article  PubMed  Google Scholar 

  35. Hermens AF, Barendsen GW. Changes of cell proliferation characteristics in a rat rhabdomyosarcoma before and after x-irradiation. Eur J Cancer 1969; 5: 173–179.

    Article  CAS  PubMed  Google Scholar 

  36. Kummermehr J, Trott JR. Rate of population in a slow and a fast growing mouse tumor. En: KÄrcher KH, Kogelnik HD, Reinartz KG, editores. Progress in radiooncology. II. Nueva York: Raven Press, 1982; 299–302.

    Google Scholar 

  37. Fletcher GH. Textbook of radiation therapy. Filadelfia: Lea & Febiger, 1980; 237–426.

    Google Scholar 

  38. Parsons JT, Cassissi NJ, Million RR. Results of twice-day irradiation of squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1984; 10: 2041–2051.

    Article  CAS  PubMed  Google Scholar 

  39. Withers HR. Biological basis for altered fractionation schemes. Cancer 1985; 55: 2086–2095.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, V., Guerrero, R., Cueto, J. et al. Radioterapia experimental. Parámetros de respuesta tumoral a la radiación. Rev Oncología 2, 97–105 (2000). https://doi.org/10.1007/BF02979473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979473

Palabras clave

Key words

Navigation