Skip to main content
Log in

The time course of NMDA-and kainate-induced cGMP elevation and glutamate release in cultured neuron

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The levels of extracellular glutamate, intracellular Ca2+ ([Ca2+]i) and cGMP were determined for 1 h with the excitatory amino acids, N-methyl-D-aspartate (NMDA) or kainate in cultured cerebellar granule cells. Both NMDA and kainate produced a time-dependent release of glutamate, and kainate was more potent than NMDA in glutamate elevation. The elevation of extracellular glutamate was not purely governed by intracellular Ca2+ concentration. However, in opposite to the time-dependent elevation of glutamate, the elevation of cGMP by NMDA and kainate were at maximum level in short-time (1 min) incubation then remarkably decreased with longer incubation times. Post-applications (30 min after agonist) of EAA antagonst did not block EAAs-induced glutamate elevation. However, NMDA antagonist, phencyclidine (PCP), blocked NMDA-induced cGMP elevation at pre- or post-application, but kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), paradoxically augmented kainate-induced cGMP elevation for 1 h incubation. These results show that NMDA or kainate induces time-dependent elevations of extracellular glutamate, while the elevations of cGMP by these EAAs are remarkably decreased with longer incubation times. However, NMDA- and kainate-induced glutamate release was blocked by pre-application of each receptor antagonist but not by post-application while EAA-induced [Ca2+]i was blocked by post-application of antagonist. These observations suggest that EAA-induced elevation of [Ca2+]i is not parallel with elevation of glutamate release or cGMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam-Vizi, V., External Ca2+-dependent release of neurotransmitters.J. Neurochem., 58, 395–405 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Attwell, D., Barbour, B. and Szatkowski, M., Nonvesicular release of neurotransmitter.Neuron, 11, 401–407 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. and Collingridge, G. L., A synaptic model of memory: long-term potentiation in the hippocampus.Nature, 361, 31–39 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Bourne, H. R. and Nicoll, R., Molecular machines integrate coincident synaptic signals.Cell/Neuron. 72/10 (supple.) 65–75 (1993).

    Google Scholar 

  • Bouvier, M., Szatkowski, M., Amato, A. and Attwell, D., The glial cell glutamate uptake carrier counter-transports pH-changing anions.Nature, 360, 471–474 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M., A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of Protein-dye binding.Analyt. Biochem., 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S. and Snyder, S. H., Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.Proc. Natl. Acad. Sci. USA, 86, 9030–9033 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Brew, H. and Attwell, D., Electrogenic glutamate uptake is a major current carrier in the membrane of axonal retinal glial cells.Nature, 327, 707–709 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Brewer, G. J. and Cotman, C. W., NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons.Neurosci. Lett., 99, 268–273 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Cai, Z. and McCaslin, P. P., Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduced kainate-and N-methyl-D-aspartate-induced intracellular Ca2+ levels in neuronal culture.Eur. J. Pharmacol., 219, 53–57 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., Maulucci-Gedde, M. and Kriegstein, A. R., Glutamate neurotoxicity in cortical cell culture.J. Neurosci. 7, 357–368 (1987).

    PubMed  CAS  Google Scholar 

  • Collingridge, G. L. and Bliss, T. V. P., NMDA receptors-their role in long term potentiation.Trends Neurosci., 10, 288–293 (1987).

    Article  CAS  Google Scholar 

  • Collingridge, G. L. and Lester, R. A. J., Excitatory amino acid receptors in the vertebrate central nervous system.Pharmacol. Rev., 40, 143–210 (1989).

    Google Scholar 

  • Cull-Candy, S. G. and Usowicz, M. M., Multiple-con-ductance channels activated by excitatory amino acids in cerebellar neurons.Nature, 325, 525–528 (1987).

    Article  PubMed  CAS  Google Scholar 

  • De Camilli, P. and Jahn, R., Pathways to regulated exocytosis in neurons.Ann. Rev. Physiol., 52, 625–645 (1990).

    Article  Google Scholar 

  • Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection.J. Neurosci. Metho., 19 305–315 (1987).

    Article  CAS  Google Scholar 

  • Flot, B. and Seifert, W., Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain.Glia, 4, 293–304 (1991).

    Article  Google Scholar 

  • Garthwaite, J., Charles, S. L. and Chess-Williams, R., Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as inter-cellular messenger in the brain.Nature, 336, 385–388 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Gathwaite, J., Excitatory amino acid receptors and guanosine 3′,5′-cyclic monophosphate in incubated slices of immature and adult rat cerebellum.Neuroscience, 7, 2491–2497 (1982).

    Article  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260, 3440–3450 (1985).

    PubMed  CAS  Google Scholar 

  • Harper, J. F. and Brooker, G., Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′O acetylation by acetic anhydride in aqueous solution.J. Cyclic. Nucleotide Res., 1, 207–218 (1975).

    PubMed  CAS  Google Scholar 

  • Jahr, C. E., Stevens, C. F., Glutamate activates multiple single channel conductances in hippocampal neurones.Nature, 325, 522–525 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Jessell, A. M. and Kandel, E. R., Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication.Cell 72/Neuron 10 (Suppl.), 1–30 (1993).

    Article  Google Scholar 

  • Kostyuk, P. G. and Tepikin, A. V., Calcium signals in nerve cells.News Physiol. Sci., 6, 6–10 (1991).

    Google Scholar 

  • Mayer, M. L. and Westbrook, G. L., The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol., 28, 197–276 (1987).

    Article  PubMed  CAS  Google Scholar 

  • McCaslin, P. P. and Morgan, W. W., Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function.Brain Res., 417, 380–384 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Bridges, S. R. and Cotman, C. W., The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system.Ann. Rev. Pharm. Toxi., 29, 365–402 (1989).

    Article  CAS  Google Scholar 

  • Morgan, J. I. and Curran, T., Role of ion flux in the control of c-fos expression.Nature. 322, 552–555 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund, C. and Westbrook, G. L., Calcium-indcued actin depolymerization reduces NMDA channel activity.Neuron, 10, 805–814 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D., Bockaert, J. and Sladeczek, F., Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors.Trends Pharmacol. Sci, 11, 508–515 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S. R. and Hope, B. T., Neurons that say NO.Trends Neurosci, 15, 108–113 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Shin, C.S. & Kim, H.S. The time course of NMDA-and kainate-induced cGMP elevation and glutamate release in cultured neuron. Arch. Pharm. Res. 18, 153–158 (1995). https://doi.org/10.1007/BF02979187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979187

Key words

Navigation